Suppr超能文献

利用随机回归测试日模型对 BTA06 的 QTL 效应进行建模。

Modelling QTL effect on BTA06 using random regression test day models.

机构信息

Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland.

出版信息

J Appl Genet. 2013 Feb;54(1):49-60. doi: 10.1007/s13353-012-0114-0. Epub 2012 Oct 2.

Abstract

In statistical models, a quantitative trait locus (QTL) effect has been incorporated either as a fixed or as a random term, but, up to now, it has been mainly considered as a time-independent variable. However, for traits recorded repeatedly, it is very interesting to investigate the variation of QTL over time. The major goal of this study was to estimate the position and effect of QTL for milk, fat, protein yields and for somatic cell score based on test day records, while testing whether the effects are constant or variable throughout lactation. The analysed data consisted of 23 paternal half-sib families (716 daughters of 23 sires) of Chinese Holstein-Friesian cattle genotyped at 14 microsatellites located in the area of the casein loci on BTA6. A sequence of three models was used: (i) a lactation model, (ii) a random regression model with a QTL constant in time and (iii) a random regression model with a QTL variable in time. The results showed that, for each production trait, at least one significant QTL exists. For milk and protein yields, the QTL effect was variable in time, while for fat yield, each of the three models resulted in a significant QTL effect. When a QTL is incorporated into a model as a constant over time, its effect is averaged over lactation stages and may, thereby, be difficult or even impossible to be detected. Our results showed that, in such a situation, only a longitudinal model is able to identify loci significantly influencing trait variation.

摘要

在统计模型中,数量性状基因座(QTL)效应被纳入固定或随机项,但迄今为止,它主要被视为与时间无关的变量。然而,对于重复记录的性状,研究 QTL 随时间的变化非常有趣。本研究的主要目的是基于测试日记录估计牛奶、脂肪、蛋白质产量和体细胞评分的 QTL 的位置和效应,同时测试这些效应是否在整个泌乳期保持不变或变化。分析的数据包括 23 个中国荷斯坦弗里森牛的父半同胞家系(23 个公牛的 716 个女儿),这些家系在 BTA6 的酪蛋白基因座区域的 14 个微卫星上进行了基因分型。使用了三个模型的序列:(i)泌乳模型,(ii)时间上 QTL 固定的随机回归模型,(iii)时间上 QTL 可变的随机回归模型。结果表明,对于每个生产性状,至少存在一个显著的 QTL。对于牛奶和蛋白质产量,QTL 效应随时间变化,而对于脂肪产量,三种模型中的每一种都产生了显著的 QTL 效应。当 QTL 作为一个常数纳入模型中时,其效应在泌乳阶段的平均值可能会使其难以甚至不可能被检测到。我们的结果表明,在这种情况下,只有纵向模型才能识别出对性状变异有显著影响的基因座。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验