Suppr超能文献

植物 H+-PPase 表达转基因大肠杆菌和酿酒酵母的应激反应:一种用于开发抗应激生物的潜在有用机制。

Stress response of plant H+-PPase-expressing transgenic Escherichia coli and Saccharomyces cerevisiae: a potentially useful mechanism for the development of stress-tolerant organisms.

机构信息

Advanced Bio-resource Research Center, Kyungpook National University, #1370 Sankyuk-dong, Buk-gu, Daegu, 702-701, Republic of Korea.

出版信息

J Appl Genet. 2013 Feb;54(1):129-33. doi: 10.1007/s13353-012-0117-x. Epub 2012 Sep 30.

Abstract

The simple proton-translocating inorganic pyrophosphatase (H(+)-PPase) found in plants and protists is an evolutionally conserved, essential enzyme that catalyzes the hydrolysis of pyrophosphate (PPi). Little is known about the functional contribution of H(+)-PPase to the cellular response to abiotic stresses, except its high salinity and drought stress. To investigate the role of H(+)-PPase during response to cellular stress, we isolated the cDNA of Arabidopsis thaliana H(+)-PPase (AVP1) and Oryza sativa H(+)-PPase (OVP1) and constructed transgenic Saccharomyces cerevisiae and Escherichia coli lines that express AVP1 and OVP1. In S. cerevisiae, the expression of a chimeric derivative of the AVP1 and OVP1 alleviated the phenotype associated with ipp2-deficient cells in the presence of high salinity (NaCl) and metal stressors (Cd, Mn, and Zn). In E. coli, AVP1 and OVP1 overexpression conferred enhanced tolerance to abiotic stresses, including heat shock and H(2)O(2), as well as NaCl, Cd, Mn, Zn, Ca, and Al. Interestingly, AVP1 and OVP1 overexpression resulted in hypersensitivity to menadione and cobalt. These results demonstrate the cellular capacity of AVP1- and OVP1-expressing transgenic yeast and E. coli in response to physiological, abiotic stresses. Moreover, our results suggest new ways of engineering stress-tolerant plants that are capable of responding to climate change. Here, we provide an outline of an experimental system to examine the alternative roles of plant H(+)-PPase.

摘要

在植物和原生生物中发现的简单质子转运无机焦磷酸酶(H(+)-PPase)是一种进化保守的必需酶,它催化焦磷酸(PPi)的水解。除了高盐度和干旱胁迫外,人们对 H(+)-PPase 对非生物胁迫的细胞反应的功能贡献知之甚少。为了研究 H(+)-PPase 在应对细胞应激时的作用,我们分离了拟南芥 H(+)-PPase(AVP1)和水稻 H(+)-PPase(OVP1)的 cDNA,并构建了表达 AVP1 和 OVP1 的转基因酿酒酵母和大肠杆菌系。在酿酒酵母中,AVP1 和 OVP1 的嵌合衍生物的表达缓解了高盐度(NaCl)和金属胁迫剂(Cd、Mn 和 Zn)存在下与 ipp2 缺陷细胞相关的表型。在大肠杆菌中,AVP1 和 OVP1 的过表达赋予了对非生物胁迫的增强耐受性,包括热休克和 H(2)O(2),以及 NaCl、Cd、Mn、Zn、Ca 和 Al。有趣的是,AVP1 和 OVP1 的过表达导致对 menadione 和钴的超敏反应。这些结果表明,表达 AVP1 和 OVP1 的转基因酵母和大肠杆菌具有应对生理、非生物胁迫的细胞能力。此外,我们的结果为工程耐胁迫植物提供了新的途径,这些植物能够应对气候变化。在这里,我们提供了一个实验系统的概述,以检查植物 H(+)-PPase 的替代作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验