Suppr超能文献

趋化因子 GPCR 信号在斑马鱼轴形成过程中抑制 β-连环蛋白。

Chemokine GPCR signaling inhibits β-catenin during zebrafish axis formation.

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.

出版信息

PLoS Biol. 2012;10(10):e1001403. doi: 10.1371/journal.pbio.1001403. Epub 2012 Oct 9.

Abstract

Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca(2+) stores generates Ca(2+) transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal β-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca(2+) downstream of non-canonical Wnt ligands was proposed to inhibit β-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of β-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of β-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal β-catenin and its axis-inducing activity and can also inhibit the Gsk3β -insensitive form of β-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit β-catenin, likely by promoting Ca(2+) transients throughout the blastula. Our study delineates a novel negative, Gsk3β-independent control mechanism of β-catenin and implicates Ccr7 as a long-hypothesized GPCR regulating vertebrate axis formation.

摘要

脊椎动物胚胎轴的形成是由背侧纽考布囊胚组织者的建立引发的,其特征是母源性β-连环蛋白的核积累,β-连环蛋白是经典 Wnt 信号转导的转录效应物。已知的轴特化调节剂包括正向或负向影响β-连环蛋白的经典 Wnt 途径成分。从实验中推测 G 蛋白偶联受体(GPCRs)的参与,该实验表明 G 蛋白和细胞内钙参与了轴的形成,但尚未鉴定出此类 GPCR。当母源性β-连环蛋白的核积累标记纽考布组织者的形成时,斑马鱼囊胚的浅层卵裂球中会产生细胞内 Ca(2+)库的动员,从而产生 Ca(2+)瞬变。此外,提出非经典 Wnt 配体下游的细胞内 Ca(2+)抑制β-连环蛋白和轴的形成,但机制尚不清楚。在这里,我们报告了 Ccr7 GPCR 及其趋化因子配体 Ccl19.1 的新功能,此前该受体在哺乳动物中的树突状细胞的趋化作用和其他反应中被牵涉,作为斑马鱼中β-连环蛋白和轴形成的负调节剂。我们表明,干扰母体和广泛表达的斑马鱼 Ccr7 或 Ccl19.1 会扩大囊胚组织者并扩大背侧和前组织,而牺牲腹侧和后组织。相反,Ccr7 或 Ccl19.1 的过表达限制了轴的形成。上位性分析表明,Ccr7 位于 Ccl19.1 配体的下游和β-连环蛋白转录靶标的上游。此外,Ccl19/Ccr7 信号降低了母源性β-连环蛋白及其诱导轴的活性的水平和核积累,并且还可以抑制 Gsk3β 不敏感形式的β-连环蛋白。突变和药理学实验表明,Ccr7 在轴形成过程中作为 GPCR 发挥作用,抑制β-连环蛋白,可能通过在整个囊胚中促进 Ca(2+)瞬变来实现。我们的研究描绘了一种新的负性、Gsk3β 独立的β-连环蛋白调控机制,并暗示 Ccr7 是一种长期以来被假设的调节脊椎动物轴形成的 GPCR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315d/3467228/c5721f99aed0/pbio.1001403.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验