Institut für Halbleiter und Festkörperphysik, Johannes Kepler University, Linz, Austria.
Sci Rep. 2012;2:722. doi: 10.1038/srep00722. Epub 2012 Oct 10.
Owing to the variety of possible charge and spin states and to the different ways of coupling to the environment, paramagnetic centres in wide band-gap semiconductors and insulators exhibit a strikingly rich spectrum of properties and functionalities, exploited in commercial light emitters and proposed for applications in quantum information. Here we demonstrate, by combining synchrotron techniques with magnetic, optical and ab initio studies, that the codoping of GaN:Mn with Mg allows to control the Mn(n+) charge and spin state in the range 3≤n≤5 and 2≥S≥1. According to our results, this outstanding degree of tunability arises from the formation of hitherto concealed cation complexes Mn-Mg(k), where the number of ligands k is pre-defined by fabrication conditions. The properties of these complexes allow to extend towards the infrared the already remarkable optical capabilities of nitrides, open to solotronics functionalities, and generally represent a fresh perspective for magnetic semiconductors.
由于可能的电荷和自旋态的多样性,以及与环境耦合的不同方式,宽禁带半导体和绝缘体中的顺磁中心表现出丰富的性质和功能谱,这些性质和功能谱在商业发光体中得到了应用,并被提议用于量子信息。在这里,我们通过结合同步辐射技术与磁、光和第一性原理研究表明,在 GaN:Mn 中掺入 Mg 可以控制 Mn(n+)的电荷和自旋态,范围为 3≤n≤5 和 2≥S≥1。根据我们的结果,这种出色的可调谐性源于迄今隐藏的阳离子配合物 Mn-Mg(k)的形成,其中配体 k 的数量由制造条件预先确定。这些配合物的性质使得氮化物的光学性能能够向红外扩展,开辟了单电子晶体管的功能,并为磁性半导体提供了新的视角。