Suppr超能文献

预测新兴成年人对各种非法药物使用的污名化的因素。

Predictors of stigmatization towards use of various illicit drugs among emerging adults.

机构信息

Center for Health, Identity, Behavior & Prevention Studies, The Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY, USA.

出版信息

J Psychoactive Drugs. 2012 Jul-Aug;44(3):243-51. doi: 10.1080/02791072.2012.703510.

Abstract

The stigma associated with illegal drug use is nearly universal, but each drug is associated with its own specific level of stigma. This study examined level of stigmatization towards users of various illegal drugs and determined what variables explain such attitudes. A sample of emerging adults (age 18 to 25) was surveyed throughout New York City (N = 1021) and lifetime use, level of exposure to users, and level of stigmatization was assessed regarding use of marijuana, powder cocaine, Ecstasy, and nonmedical use of opioids and amphetamine. Bivariate and multivariate analyses were conducted to examine predictors of stigmatization towards each drug. Results suggest that non-illegal drug users reported high levels of stigmatization towards users of all drugs, but lifetime marijuana users reported significantly lower levels of stigmatization towards users of all harder drugs. This may suggest that once an individual enters the realm of illegal drug use, stigmatization towards use of harder drugs decreases, potentially leaving individuals at risk for use of more dangerous substances. Since stigma and social disapproval may be protective factors against illegal drug use, policy experts need to consider the potential flaws associated with classifying marijuana with harder, more dangerous drugs.

摘要

与非法药物使用相关的污名几乎是普遍存在的,但每种药物都与自己特定的污名程度相关。本研究调查了对各种非法药物使用者的污名化程度,并确定了哪些变量可以解释这种态度。在整个纽约市(N=1021)对处于成年早期(18 至 25 岁)的样本进行了调查,评估了大麻、可卡因粉末、摇头丸以及阿片类药物和苯丙胺的非医疗使用的终生使用、使用者的接触程度和污名化程度。进行了单变量和多变量分析,以检验对每种药物的污名化的预测因素。结果表明,非药物使用者对所有药物使用者的污名化程度较高,但终生使用大麻者对所有更难药物使用者的污名化程度显著降低。这可能表明,一旦一个人进入非法药物使用领域,对更难药物使用的污名化程度就会降低,这可能使个人面临使用更危险物质的风险。由于污名和社会反对可能是预防非法药物使用的保护因素,政策专家需要考虑将大麻与更难、更危险的药物进行分类相关的潜在缺陷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验