Suppr超能文献

多菌株感染模型的分支、稳定性和簇形成

Bifurcation, stability, and cluster formation of multi-strain infection models.

作者信息

Chan Bernard S, Yu Pei

机构信息

Department of Applied Mathematics, The University of Western Ontario, London, ON, N6A 5B7, Canada,

出版信息

J Math Biol. 2013 Dec;67(6-7):1507-32. doi: 10.1007/s00285-012-0600-3. Epub 2012 Oct 13.

Abstract

Clustering behaviours have been found in numerous multi-strain transmission models. Numerical solutions of these models have shown that steady-states, periodic, or even chaotic motions can be self-organized into clusters. Such clustering behaviours are not a priori expected. It has been proposed that the cross-protection from multiple strains of pathogens is responsible for the clustering phenomenon. In this paper, we show that the steady-state clusterings in existing models can be analytically predicted. The clusterings occur via semi-simple double zero bifurcation from the quotient networks of the models and the patterns which follow can be predicted through the stability analysis of the bifurcation. We calculate the stability criteria for the clustering patterns and show that some patterns are inherently unstable. Finally, the biological implications of these results are discussed.

摘要

在众多多菌株传播模型中都发现了聚类行为。这些模型的数值解表明,稳态、周期性甚至混沌运动都可以自组织成簇。这种聚类行为并非先验预期的。有人提出,多种病原体菌株的交叉保护是聚类现象的原因。在本文中,我们表明现有模型中的稳态聚类可以通过解析预测。聚类通过模型商网络的半单双零分岔出现,后续模式可通过分岔的稳定性分析来预测。我们计算了聚类模式的稳定性标准,并表明某些模式本质上是不稳定的。最后,讨论了这些结果的生物学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验