Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
Electrophoresis. 2012 Nov;33(21):3133-42. doi: 10.1002/elps.201200263. Epub 2012 Oct 12.
The isolation and capture of rare cells is a problem uniquely suited to microfluidic devices, in which geometries on the cellular length scale can be engineered and a wide range of chemical functionalizations can be implemented. The performance of such devices is primarily affected by the chemical interaction between the cell and the capture surface and the mechanics of cell-surface collision and adhesion. As rare cell-capture technology has been summarized elsewhere (E. D. Pratt et al., Chem. Eng. Sci. 2011, 66, 1508-1522), this article focuses on the fundamental adhesion and transport mechanisms in rare cell-capture microdevices, and explores modern device design strategies in a transport context. The biorheology and engineering parameters of cell adhesion are defined; adhesion models and reaction kinetics briefly reviewed. Transport at the microscale, including diffusion and steric interactions that result in cell motion across streamlines, is discussed. The review concludes by discussing design strategies with a focus on leveraging the underlying transport phenomena to maximize device performance.
稀有细胞的分离和捕获是微流控设备所特有的问题,在这种设备中,可以对细胞尺度的几何形状进行设计,并可以实现广泛的化学功能化。此类设备的性能主要受细胞与捕获表面之间的化学相互作用以及细胞表面碰撞和粘附的力学影响。由于稀有细胞捕获技术已在其他地方进行了总结(E. D. Pratt 等人,《化学工程科学》2011 年,66 卷,1508-1522 页),本文重点介绍了稀有细胞捕获微器件中的基本粘附和传输机制,并从传输角度探讨了现代器件设计策略。定义了细胞粘附的生物流变学和工程参数;简要回顾了粘附模型和反应动力学。讨论了微尺度上的传输,包括导致细胞沿流线运动的扩散和空间相互作用。最后通过讨论设计策略来结束本文,重点是利用基础传输现象来最大化器件性能。