Suppr超能文献

微流控中的稀有细胞分离与分析。

Rare cell isolation and analysis in microfluidics.

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Lab Chip. 2014 Feb 21;14(4):626-45. doi: 10.1039/c3lc90136j.

Abstract

Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed.

摘要

稀有细胞是在数量庞大的背景细胞中数量较少的细胞。由于传统的台式技术通常选择性低,且样本损失较大,因此其在分离和分析稀有细胞方面的能力有限。最近,微流控技术的快速发展为稀有细胞的分离和分析带来了强大的解决方案。除了明显的性能提升,带来更高的效率和灵敏度水平之外,微流控还提供了其他先进的功能,例如更简单地处理小样本量和用于高通量处理的多路复用能力。所有这些优势使微流控成为处理稀有细胞的运输、分离和分析的绝佳平台。各种细胞生物标志物,包括物理特性、介电特性以及免疫亲和性,已被探索用于分离稀有细胞。在这篇专题文章中,我们讨论了用于稀有细胞分离和分析的代表性微流控设备的设计考虑因素。讨论了最近发表的作品中的示例,以突出不同技术的优势和局限性。然后介绍了这些技术的各种应用。最后,提出了该领域的发展趋势和有前途的研究方向的观点。

相似文献

1
Rare cell isolation and analysis in microfluidics.
Lab Chip. 2014 Feb 21;14(4):626-45. doi: 10.1039/c3lc90136j.
2
Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.
Electrophoresis. 2013 Apr;34(7):1028-41. doi: 10.1002/elps.201200417. Epub 2013 Mar 11.
3
Microfluidic transport in microdevices for rare cell capture.
Electrophoresis. 2012 Nov;33(21):3133-42. doi: 10.1002/elps.201200263. Epub 2012 Oct 12.
5
Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
Lab Chip. 2011 Jun 7;11(11):1870-8. doi: 10.1039/c0lc00633e. Epub 2011 Apr 19.
7
High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
Biomed Microdevices. 2015 Dec;17(6):110. doi: 10.1007/s10544-015-0018-y.
8
Numerical and experimental evaluation of microfluidic sorting devices.
Biotechnol Prog. 2008 Jul-Aug;24(4):981-91. doi: 10.1002/btpr.7.
9
Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
Annu Rev Biomed Eng. 2015;17:1-34. doi: 10.1146/annurev-bioeng-071114-040818. Epub 2015 Jul 16.
10
Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
Lab Chip. 2013 May 21;13(10):1919-29. doi: 10.1039/c3lc50101a. Epub 2013 Mar 26.

引用本文的文献

3
The Latest Advances in Microfluidic DLD Cell Sorting Technology: The Optimization of Channel Design.
Biosensors (Basel). 2025 Feb 19;15(2):126. doi: 10.3390/bios15020126.
4
Thermal bubble single-cell printing chip: High-throughput, wide-field, and efficient.
Biomicrofluidics. 2024 Nov 26;18(6):064102. doi: 10.1063/5.0225883. eCollection 2024 Dec.
6
A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling.
PLoS One. 2023 Oct 11;18(10):e0292554. doi: 10.1371/journal.pone.0292554. eCollection 2023.
8
Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation.
Bioengineering (Basel). 2022 Nov 3;9(11):646. doi: 10.3390/bioengineering9110646.
9
Aptamer-Based Cancer Cell Analysis and Treatment.
ChemistryOpen. 2022 Oct;11(10):e202200141. doi: 10.1002/open.202200141.
10
The VersaLive platform enables microfluidic mammalian cell culture for versatile applications.
Commun Biol. 2022 Sep 29;5(1):1034. doi: 10.1038/s42003-022-03976-8.

本文引用的文献

1
Hydrodynamic mechanisms of cell and particle trapping in microfluidics.
Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.
2
Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis.
Biomicrofluidics. 2013 Jan 16;7(1):11807. doi: 10.1063/1.4774304. eCollection 2013.
5
Microchip-based detection of magnetically labeled cancer biomarkers.
Adv Drug Deliv Rev. 2014 Feb;66:101-9. doi: 10.1016/j.addr.2013.09.013. Epub 2013 Oct 5.
6
Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets.
Nat Nanotechnol. 2013 Oct;8(10):735-41. doi: 10.1038/nnano.2013.194. Epub 2013 Sep 29.
7
Size-selective collection of circulating tumor cells using Vortex technology.
Lab Chip. 2014 Jan 7;14(1):63-77. doi: 10.1039/c3lc50689d. Epub 2013 Sep 23.
8
Cancer. Circulating tumor cells.
Science. 2013 Sep 13;341(6151):1186-8. doi: 10.1126/science.1235226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验