Suppr超能文献

基于结构约束的稀疏典型相关分析及其在微生物组数据分析中的应用。

Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis.

机构信息

Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA.

出版信息

Biostatistics. 2013 Apr;14(2):244-58. doi: 10.1093/biostatistics/kxs038. Epub 2012 Oct 15.

Abstract

Motivated by studying the association between nutrient intake and human gut microbiome composition, we developed a method for structure-constrained sparse canonical correlation analysis (ssCCA) in a high-dimensional setting. ssCCA takes into account the phylogenetic relationships among bacteria, which provides important prior knowledge on evolutionary relationships among bacterial taxa. Our ssCCA formulation utilizes a phylogenetic structure-constrained penalty function to impose certain smoothness on the linear coefficients according to the phylogenetic relationships among the taxa. An efficient coordinate descent algorithm is developed for optimization. A human gut microbiome data set is used to illustrate this method. Both simulations and real data applications show that ssCCA performs better than the standard sparse CCA in identifying meaningful variables when there are structures in the data.

摘要

受研究营养摄入与人类肠道微生物组组成之间关联的启发,我们开发了一种用于高维环境下结构约束稀疏典型相关分析(ssCCA)的方法。ssCCA 考虑了细菌之间的系统发育关系,这为细菌分类群之间的进化关系提供了重要的先验知识。我们的 ssCCA 公式利用了一个系统发育结构约束惩罚函数,根据分类群之间的系统发育关系,对线性系数施加一定的平滑度。开发了一种有效的坐标下降算法来进行优化。利用人类肠道微生物组数据集来说明这种方法。模拟和实际数据应用都表明,当数据中存在结构时,ssCCA 在识别有意义的变量方面比标准稀疏 CCA 表现更好。

相似文献

7
SEPP: SATé-enabled phylogenetic placement.SEPP:基于SATé的系统发育定位
Pac Symp Biocomput. 2012:247-58. doi: 10.1142/9789814366496_0024.

引用本文的文献

8
Progress on network modeling and analysis of gut microecology: a review.肠道微生物网络建模与分析研究进展:综述
Appl Environ Microbiol. 2024 Mar 20;90(3):e0009224. doi: 10.1128/aem.00092-24. Epub 2024 Feb 28.

本文引用的文献

1
4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验