Suppr超能文献

单侧神经网络辅助典型相关分析及其在故障诊断中的应用。

A Single-Side Neural Network-Aided Canonical Correlation Analysis With Applications to Fault Diagnosis.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):9454-9466. doi: 10.1109/TCYB.2021.3060766. Epub 2022 Aug 18.

Abstract

Recently, canonical correlation analysis (CCA) has been explored to address the fault detection (FD) problem for industrial systems. However, most of the CCA-based FD methods assume both Gaussianity of measurement signals and linear relationships among variables. These assumptions may be improper in some practical scenarios so that direct applications of these CCA-based FD strategies are arguably not optimal. With the aid of neural networks, this work proposes a new nonlinear counterpart called a single-side CCA (SsCCA) to enhance FD performance. The contributions of this work are four-fold: 1) an objective function for the nonlinear CCA is first reformulated, based on which a generalized solution is presented; 2) for the practical implementation, a particular solution of SsCCA is developed; 3) an SsCCA-based FD algorithm is designed for nonlinear systems, whose optimal FD ability is illustrated via theoretical analysis; and 4) based on the difference in FD results between two test statistics, fault diagnosis can be directly achieved. The studies on a nonlinear three-tank system are carried out to verify the effectiveness of the proposed SsCCA method.

摘要

最近,规范相关分析(CCA)已被探索用于解决工业系统的故障检测(FD)问题。然而,大多数基于 CCA 的 FD 方法都假设测量信号的高斯性和变量之间的线性关系。在某些实际情况下,这些假设可能不恰当,因此直接应用这些基于 CCA 的 FD 策略可能不是最优的。在神经网络的帮助下,这项工作提出了一种新的非线性对应方法,称为单边 CCA(SsCCA),以提高 FD 性能。这项工作的贡献有四点:1)首先重新制定了非线性 CCA 的目标函数,在此基础上提出了广义解;2)为了实际应用,开发了 SsCCA 的特定解;3)为非线性系统设计了基于 SsCCA 的 FD 算法,通过理论分析说明了其最优 FD 能力;4)基于两个检验统计量之间的 FD 结果差异,可以直接进行故障诊断。通过对非线性三容系统的研究,验证了所提出的 SsCCA 方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验