Suppr超能文献

mi-Mic:一种用于微生物组-疾病关联的新型多层统计检验方法。

mi-Mic: a novel multi-layer statistical test for microbiota-disease associations.

机构信息

Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.

出版信息

Genome Biol. 2024 May 1;25(1):113. doi: 10.1186/s13059-024-03256-0.

Abstract

mi-Mic, a novel approach for microbiome differential abundance analysis, tackles the key challenges of such statistical tests: a large number of tests, sparsity, varying abundance scales, and taxonomic relationships. mi-Mic first converts microbial counts to a cladogram of means. It then applies a priori tests on the upper levels of the cladogram to detect overall relationships. Finally, it performs a Mann-Whitney test on paths that are consistently significant along the cladogram or on the leaves. mi-Mic has much higher true to false positives ratios than existing tests, as measured by a new real-to-shuffle positive score.

摘要

mi-Mic 是一种用于微生物组差异丰度分析的新方法,解决了此类统计检验的关键挑战:大量检验、稀疏性、不同的丰度尺度和分类学关系。mi-Mic 首先将微生物计数转换为均值的系统发育树。然后,它在系统发育树的上层应用先验检验来检测整体关系。最后,它对沿着系统发育树或在叶上一致显著的路径执行曼-惠特尼检验。mi-Mic 的真阳性与假阳性的比值比现有测试高得多,这可以通过新的真实到随机正分数来衡量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0998/11064322/8f6c96971ec5/13059_2024_3256_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验