Ont Health Technol Assess Ser. 2006;6(19):1-43. Epub 2006 Nov 1.
Due to continuing advances in the development of structures, devices, and systems with a length of about 1 to 100 nanometres (nm) (1 nm is one billionth of a metre), the Medical Advisory Secretariat conducted a horizon scanning appraisal of nanotechnologies as new and emerging technologies, including an assessment of the possibly disruptive impact of future nanotechnologies. The National Cancer Institute (NCI) in the United States proclaimed a 2015 challenge goal of eliminating suffering and death from cancer. To help meet this goal, the NCI is engaged in a concerted effort to introduce nanotechnology "to radically change the way we diagnose, treat and prevent cancer." It is the NCI's position that "melding nanotechnology and cancer research and development efforts will have a profound, disruptive effect on how we diagnose, treat, and prevent cancer." Thus, this appraisal sought to determine the systemic effects of nanotechnologies that target, image and deliver drugs, for example, with respect to health human resources, training, and new specialties; and to assess the current status of these nanotechnologies and their projected timeline to clinical utilization.
TARGET POPULATION AND CONDITION Cancer is a heterogeneous set of many malignant diseases. In each sex, 3 sites account for over one-half of all cancers. In women, these are the breast (28%), colorectum (13%) and lungs (12%). In men, these are the prostate (28%), lungs (15%), and the colorectum (13%). It is estimated that 246,000 people in Ontario (2% of the population) have been diagnosed with cancer within the past 10 years and are still alive. Most were diagnosed with cancer of the breast (21%), prostate (20%), or colon or rectum (13%). The number of new cancer cases diagnosed each year in Ontario is expected to increase from about 53,000 in 2001 to 80,000 in 2015. This represents more than a 50% increase in new cases over this period. An aging population, population growth, and rising cancer risk are thought to be the main factors that will contribute to the projected increase in the number of new cases. THE TECHNOLOGY BEING REVIEWED - MEDICAL ADVISORY SECRETARIAT DEFINITION OF NANOTECHNOLOGY: FIRST-GENERATION NANOTECHNOLOGIES: Early application of nanotechnology-enabled products involved drug reformulation to deliver some otherwise toxic drugs (e.g., antifungal and anticancer agents) in a safer and more effective manner. Examples of first-generation nanodevices include the following: liposomes;albumin bound nanoparticles;gadolinium chelate for magnetic resonance imaging (MRI);iron oxide particles for MRI;silver nanoparticles (antibacterial wound dressing); andnanoparticulate dental restoratives.First-generation nanodevices have been in use for several years; therefore, they are not the focus of this report. SECOND-GENERATION NANOTECHNOLOGIES: Second-generation nanotechnologies are more sophisticated than first- generation nanotechnologies, due to novel molecular engineering that enables the devices to target, image, deliver a therapeutic agent, and monitor therapeutic efficacy in real time. Details and examples of second-generation nanodevices are discussed in the following sections of this report.
The questions asked were as follows: What is the status of these multifunctional nanotechnologies? That is, what is the projected timeline to clinical utilization?What are the systemic effects of multifunctional nanodevices with integrated applications that target, image, and deliver drugs? That is, what are the implications of the emergence of nanotechnology on health human resources training, new specialties, etc.?The Medical Advisory Secretariat used its usual search techniques to conduct the literature review by searching relevant databases. Outcomes of interest were improved imaging, improved sensitivity or specificity, improved response rates to therapeutic agents, and decreased toxicity.
The search yielded 1 health technology assessment on nanotechnology by The Centre for Technology Assessment TA-Swiss and, in the grey literature, a technology review by RAND. These, in addition to data from the National Cancer Institute (United States) formed the basis for the conclusions of the review. With respect to the question as to how soon until nanotechnology is used in patient care, overall, the use of second-generation nanodevices, (e.g., quantum dots [QDs]), nanoshells, dendrimers) that can potentially target, image, and deliver drugs; and image cell response to therapy in real time are still in the preclinical benchwork stage. Table 1 summarizes the projected timelines to clinical utilization. Table 1:Summary of Timelines to Clinical UseOrganization/YearSecond-Generation NanodeviceEstimate of When Nanodevice Will be in Clinical UseNCI 2001Imaging/detection (e.g., QDs)Therapeutic (e.g., nanoshell)Combined (e.g., dendrimer)2006-20162006-20162016-2020NCI 2004Imaging/detectionTherapeuticCombined2009-20192009-20192019-2024RAND 2006Combinedunlikely before 2021Swiss 2003ImagingTherapeuticCombined2005-20102008-2013~ 2010-2013NCI refers to National Cancer Institute; QD, quantum dot.Medical Advisory Secretariat Estimated Timeline for Ontario Upon synthesizing the estimated timelines from the NCI, the Swiss technology assessment and the RAND reports (Figure 1), it appears that: the clinical use of separate imaging and therapeutic nanodevices is estimated to start occurring around 2010;the clinical use of combined imaging and therapeutic nanodevices is estimated to start occurring around 2020;changes in the way disease is diagnosed, treated and monitored are anticipated; andthe full (and realistic) extent of these changes within the next 10 to 20 years is uncertain.Figure 1:Medical Advisory Secretariat Estimated Timeline for the Clinical Use of Second-Generation Nanodevices in OntarioWith respect to the question on potential systemic effects of second-generation nanodevices (i.e., the implications of the emergence of these nanodevices on health human resources training, new specialties etc.), Table 2 summarizes the findings from the review. Table 2:Potential Systemic Effects Caused by Second Generation Nanodevices*ImagingTherapeuticCombined (Detect, Image, Treat, Monitor)Increased sensitivity and specificity of QDs or other nanodevices could lead to the replacement of existing technologies (e.g., PSA testing, mammogram).Sudden demand in use of MRI due to use of nanodevices that are activated in the presence of a magnetic field.Universal demand to detect cancer- how will patients be prioritized for this?Sudden demand in use of MRI due to use of nanodevices that are activated in the presence of a magnetic field.Cost: possibly more expensive than current screening modalities.Possibly more expensive than existing therapies (gold nanoshells)Many functions can be performed on one device → possibly faster, more cost-effective than individual devices.Report of results: possibly faster than existing technologies.Possibly faster determination of therapeutic efficacy (vs. existing technologies)Increase in life expectancy of population? Free-up beds in hospitals?Nanodevices may be able to pinpoint with more accuracy when cancer starts.Ethical question: when does disease start?Increased demand for imaging by people who are asymptomatic and concerned they may get cancer.Nano-radiologist or medical nano-oncologist provides treatment rather than conventional radiologists or medical oncologists.Creation of nano-nursing compared to conventional nursing.Nano-radiologist or medical nano-oncologist provides treatment, rather than conventional radiologists or medical oncologists.Creation of nano-nursing compared to conventional nursing.Uncertainty regarding how many "traditional" cancer radiologists/oncologists should be retained and trained.New branch of (nano) radiology compared to conventional radiology New/longer training in biochemistry and targeting ligands will be required by nanoradiologists.More training required for new nano-treatments Patient education - people may be concerned regarding the use of nanodevices inside their bodies.Longer time to specialize in medicine in order to use nanotechnology clinically?Insufficient number of dendrimer specialists to treat everyone with personalized dendrimersRestricted to specialized centres Possible in-house nanodevice production required to keep up with the demand for use.Will the same specialized centres that offer imaging also offer treatment?How many specialized centres will be required?Only specialized centres can perform this combined imaging/treatmentPossible nano-monitoring from patient home via wireless technology. This may free hospital beds for other patients.After imaging with nanodevices, specifically targeted therapeutic nanodevices may also be required for immediate treatment of the patient. Will both of these nanodevices be commercially available in sufficient quantities?Possible waiting time for preparation of appropriately targeted nanodevice after imaging (will a therapeutic nanodevice be immediately available?)Will a patient receive conventional treatment if there is a waiting period required to prepare the therapeutic nanodevice?Will there be a patient waiting time required for preparation of personalized dendrimers (hours, days, weeks after a patient sees a physician)?*MRI indicates magnetic resonance imaging; PSA, prostate-specific antigen; QD, quantum dot.
The United States National Nanotechnology Initiative (NNI) funds a variety of research in the economic, ethical, legal, and cultural implications of the use of nanotechnology, as well as the implications for science, education and quality of life. There are many uncertainties that are sparsely or not addressed at all in the literature regarding second generation nanodevices. (ABSTRACT TRUNCATED)
目的:由于长度约为1至100纳米(1纳米为十亿分之一米)的结构、设备和系统的开发不断取得进展,医学咨询秘书处对纳米技术作为新兴技术进行了前瞻性扫描评估,包括对未来纳米技术可能产生的颠覆性影响的评估。美国国立癌症研究所(NCI)宣布了2015年消除癌症痛苦和死亡的挑战目标。为了帮助实现这一目标,NCI正在齐心协力引入纳米技术,“从根本上改变我们诊断、治疗和预防癌症的方式”。NCI的立场是,“将纳米技术与癌症研发努力相结合,将对我们诊断、治疗和预防癌症的方式产生深远的颠覆性影响”。因此,本次评估旨在确定靶向、成像和输送药物的纳米技术的系统性影响,例如在卫生人力资源、培训和新专业方面;并评估这些纳米技术的现状及其临床应用的预计时间表。
临床需求:目标人群和病症 癌症是一组异质性的多种恶性疾病。在每种性别中,3个部位的癌症占所有癌症的一半以上。在女性中,这些部位是乳腺(28%)、结肠直肠(13%)和肺(12%)。在男性中,这些部位是前列腺(28%)、肺(15%)和结肠直肠(13%)。据估计,安大略省有24.6万人(占人口的2%)在过去10年中被诊断出患有癌症且仍然存活。大多数人被诊断患有乳腺癌(21%)、前列腺癌(20%)或结肠或直肠癌(13%)。安大略省每年新诊断出的癌症病例数预计将从2001年的约5.3万例增加到2015年的8万例。这意味着在此期间新病例增加了50%以上。人口老龄化、人口增长和癌症风险上升被认为是导致新病例预计增加的主要因素。正在审查的技术 - 医学咨询秘书处对纳米技术的定义:第一代纳米技术:纳米技术产品的早期应用涉及药物重新配方,以更安全、更有效地递送一些原本有毒的药物(如抗真菌和抗癌药物)。第一代纳米设备的例子包括:脂质体;白蛋白结合纳米颗粒;用于磁共振成像(MRI)的钆螯合物;用于MRI的氧化铁颗粒;银纳米颗粒(抗菌伤口敷料);以及纳米颗粒牙科修复材料。第一代纳米设备已经使用了几年;因此,它们不是本报告的重点。第二代纳米技术:第二代纳米技术比第一代纳米技术更复杂,这归因于新颖的分子工程技术,使设备能够靶向、成像、递送治疗剂并实时监测治疗效果。本报告的以下部分将讨论第二代纳米设备的细节和示例。
审查策略:提出的问题如下:这些多功能纳米技术的现状如何?即临床应用的预计时间表是怎样的?具有靶向、成像和递送药物综合应用的多功能纳米设备的系统性影响是什么?即纳米技术的出现对卫生人力资源培训、新专业等有何影响?医学咨询秘书处使用其常用的搜索技术,通过搜索相关数据库进行文献综述。感兴趣的结果包括成像改善、灵敏度或特异性提高、治疗剂反应率提高以及毒性降低。
结果:搜索产生了瑞士技术评估中心(TA - Swiss)关于纳米技术的1项卫生技术评估,以及灰色文献中兰德公司的一项技术综述。这些,再加上美国国立癌症研究所的数据,构成了综述结论的基础。关于纳米技术在患者护理中使用的时间问题,总体而言,可以潜在地靶向、成像和递送药物,并实时成像细胞对治疗反应的第二代纳米设备(如量子点[QD]、纳米壳、树枝状大分子)的使用仍处于临床前实验阶段。表1总结了临床应用的预计时间表。表1:临床使用时间表总结*组织/年份 第二代纳米设备 纳米设备预计临床使用时间 NCI 2001 成像/检测(如量子点) 治疗(如纳米壳) 联合(如树枝状大分子) ~2006 - 2016年 ~2006 - 2016年 ~2016 - 2020年 NCI 2004 成像/检测 治疗 联合 ~2009 - 2019年 ~2009 - 2019年 ~2019 - 2024年 兰德公司2006 联合 2021年之前不太可能 瑞士2003 成像 治疗 联合 ~2005 - 2010年 ~2008 - 2013年 ~2010 - 2013年 NCI指国立癌症研究所;QD为量子点。医学咨询秘书处对安大略省的预计时间表 在综合国立癌症研究所、瑞士技术评估和兰德报告的预计时间表后(图1),似乎: 单独的成像和治疗纳米设备的临床使用估计在2010年左右开始; 成像和治疗联合纳米设备的临床使用估计在2020年左右开始; 预计疾病的诊断、治疗和监测方式会发生变化; 未来10至20年内这些变化的全部(和实际)程度尚不确定。图1:医学咨询秘书处对安大略省第二代纳米设备临床使用的预计时间表 关于第二代纳米设备的潜在系统性影响问题(即这些纳米设备的出现对卫生人力资源培训及新专业等的影响),表2总结了综述结果。表2:第二代纳米设备可能产生的系统性影响成像 治疗 联合(检测、成像、治疗、监测) 量子点或其他纳米设备灵敏度和特异性的提高可能导致现有技术(如前列腺特异性抗原检测、乳房X光检查)被取代。 由于使用在磁场存在下被激活的纳米设备,对MRI的突然需求。检测癌症需求的普遍性 - 如何对患者进行优先级排序? 由于使用在磁场存在下被激活的纳米设备,对MRI的突然需求。成本:可能比当前筛查方式更昂贵。 可能比现有疗法(金纳米壳)更昂贵 一个设备可执行多种功能 → 可能比单个设备更快、更具成本效益。 结果报告:可能比现有技术更快。 可能比现有技术更快确定治疗效果(与现有技术相比) 人口预期寿命增加?医院床位腾出? 纳米设备可能能够更准确地确定癌症何时开始。 伦理问题:疾病何时开始? 无症状且担心可能患癌的人对成像的需求增加。 纳米放射科医生或医学纳米肿瘤学家提供治疗,而非传统放射科医生或医学肿瘤学家。 与传统护理相比,创建纳米护理。 纳米放射科医生或医学纳米肿瘤学家提供治疗,而非传统放射科医生或医学肿瘤学家。 与传统护理相比,创建纳米护理。 关于应保留和培训多少“传统”癌症放射科医生/肿瘤学家的不确定性。 与传统放射学相比,(纳米)放射学的新分支 纳米放射科医生需要在生物化学和靶向配体方面接受新的/更长时间的培训。 新的纳米治疗需要更多培训 患者教育 - 人们可能担心体内使用纳米设备。 为了临床使用纳米技术,医学专业学习时间更长? 树枝状大分子专家数量不足,无法为每个人提供个性化树枝状大分子治疗 限于专业中心 可能需要内部生产纳米设备以满足使用需求。 提供成像的专业中心也会提供治疗吗? 需要多少专业中心? 只有专业中心才能进行这种联合成像/治疗 可能通过无线技术从患者家中进行纳米监测。这可能为其他患者腾出医院床位。 使用纳米设备成像后,可能还需要专门针对患者的治疗性纳米设备进行即时治疗。这两种纳米设备会有足够的商业供应量吗? 成像后准备适当靶向纳米设备可能需要等待时间(治疗性纳米设备会立即可用吗?) 如果准备治疗性纳米设备需要等待时间,患者会接受传统治疗吗? 准备个性化树枝状大分子会有患者等待时间吗(患者看医生后数小时、数天、数周)?*MRI表示磁共振成像;PSA为前列腺特异性抗原;QD为量子点。
文献未涉及的不确定性:美国国家纳米技术计划(NNI)资助了关于纳米技术使用的经济、伦理、法律和文化影响以及对科学、教育和生活质量影响的各种研究。关于第二代纳米设备,文献中存在许多不确定性,要么很少涉及,要么根本未涉及。(摘要截断)