Institute of Physiology, Christian Albrechts University Kiel, 24098 Kiel, Germany.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18192-7. doi: 10.1073/pnas.1209174109. Epub 2012 Oct 17.
Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
钙化的海胆幼虫会对海水碳酸盐化学变化做出反应,表现为生长减缓且发育延迟。迄今为止,尚无关于海洋酸化如何影响棘皮动物幼虫体内酸碱平衡的信息。了解酸碱调节能力很重要,因为碳酸钙骨架的细胞内形成和维持依赖于酸碱平衡。我们使用 H(+) 选择性微电极和 pH 敏感荧光染料 BCECF,对棘皮动物幼虫的细胞外液和细胞内 pH(pH(e) 和 pH(i))进行了体内测量。我们将浮游幼虫暴露在一系列海水 CO(2)条件下,结果表明,在高海水 pCO(2) 暴露期间,包围钙化初级间充质细胞 (PMCs) 的细胞外腔与周围海水的 pH 一致。使用 FITC 葡聚糖缀合物,我们证明海胆幼虫的表皮具有渗漏性。因此,每当海水 pH 发生变化时,PMCs 和骨针都会直接暴露于 pH(e) 的剧烈变化中。然而,pH(i) 的测量表明 PMCs 能够完全补偿诱导的细胞内酸中毒。这高度依赖于 Na(+) 和 HCO(3)(-),表明存在涉及主动 Na(+)-依赖性膜转运蛋白的碳酸氢盐缓冲机制。我们认为,在海洋酸化下,维持 pH(i) 可以使钙化过程尽管 pH(e) 降低仍能继续进行。然而,这可能会导致成本增加。钙化或细胞内稳态的成本增加可能是导致能量分配发生变化的主要因素之一,这会影响生长,最终导致浮游幼虫在浮游生活阶段的死亡率增加。