SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
Biophys J. 2012 Oct 17;103(8):1637-47. doi: 10.1016/j.bpj.2012.08.045. Epub 2012 Oct 16.
We present a fast, high-throughput method for characterizing the motility of microorganisms in three dimensions based on standard imaging microscopy. Instead of tracking individual cells, we analyze the spatiotemporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function of the system. We demonstrate our method on two different types of microorganisms: the bacterium Escherichia coli (both smooth swimming and wild type) and the biflagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the intermediate scattering function, we are able to extract the swimming speed distribution, fraction of motile cells, and diffusivity for E. coli, and the swimming speed distribution, and amplitude and frequency of the oscillatory dynamics for C. reinhardtii. In both cases, the motility parameters were averaged over ∼10(4) cells and obtained in a few minutes.
我们提出了一种快速、高通量的三维微生物运动特性分析方法,该方法基于标准的成像显微镜。我们不是跟踪单个细胞,而是分析延时图像中样品的强度随时间的波动,并获得系统的中间散射函数。我们在两种不同类型的微生物上验证了我们的方法:细菌大肠杆菌(包括光滑游动和野生型)和双鞭毛藻类衣藻。我们使用计算机模拟和粒子追踪验证了该方法的有效性。从中间散射函数中,我们可以提取大肠杆菌的游动速度分布、游动细胞的分数和扩散系数,以及衣藻的游动速度分布、振荡动力学的幅度和频率。在这两种情况下,运动参数都是在大约 10^4 个细胞上平均得到的,且在几分钟内即可获得。