Suppr超能文献

物种的计算机辅助追踪

Computer-Assisted Tracking of Species.

作者信息

Folcik Alexandra M, Haire Timothy, Cutshaw Kirstin, Riddle Melissa, Shola Catherine, Nassani Sararose, Rice Paul, Richardson Brianna, Shah Pooja, Nazamoddini-Kachouie Nezamoddin, Palmer Andrew

机构信息

Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States.

Department of Aerospace, Physics, and Space Sciences, Florida Institute of Technology, Melbourne, FL, United States.

出版信息

Front Plant Sci. 2020 Jan 31;10:1616. doi: 10.3389/fpls.2019.01616. eCollection 2019.

Abstract

The green algae is a model system for motility in unicellular organisms. Photo-, gravi-, and chemotaxis have previously been associated with , and observing the extent of these responses within a population of cells is crucial for refining our understanding of how this organism responds to changing environmental conditions. However, manually tracking and modeling a statistically viable number of samples of these microorganisms is an unreasonable task. We hypothesized that automated particle tracking systems are now sufficiently advanced to effectively characterize such populations. Here, we present an automated method to observe motility that allows us to identify individual cells as well as global information on direction, speed, and size. Nutrient availability effects on wild-type swimming speeds, as well as changes in speed and directionality in response to light, were characterized using this method. We also provide for the first time the swimming speeds of several motility-deficient mutant lines. While our present effort is focused around the unicellular green algae, , we confirm the general utility of this approach using , another member of this genus which contains over 300 species. Our work provides new tools for evaluating and modeling motility in this model organism and establishes the methodology for conducting similar experiments on other unicellular microorganisms.

摘要

绿藻是单细胞生物运动性的一个模型系统。光趋性、重力趋性和化学趋性此前已与……相关联,并且在细胞群体中观察这些反应的程度对于完善我们对该生物体如何应对不断变化的环境条件的理解至关重要。然而,手动追踪和模拟这些微生物数量上具有统计学意义的样本是一项不合理的任务。我们假设自动化粒子追踪系统现在已经足够先进,能够有效地表征此类群体。在这里,我们提出一种观察运动性的自动化方法,该方法使我们能够识别单个细胞以及有关方向、速度和大小的全局信息。使用这种方法表征了营养可用性对野生型游泳速度的影响,以及对光反应时速度和方向性的变化。我们还首次提供了几种运动缺陷突变株系的游泳速度。虽然我们目前的工作主要围绕单细胞绿藻……,但我们使用该属的另一个成员……证实了这种方法的普遍实用性,该属包含300多个物种。我们的工作为评估和模拟这种模式生物的运动性提供了新工具,并建立了对其他单细胞微生物进行类似实验的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3729/7006616/4a5468a8b384/fpls-10-01616-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验