Suppr超能文献

镰状细胞病血管闭塞的物理基础。

The physical foundation of vasoocclusion in sickle cell disease.

机构信息

Department of Physics, Drexel University, Philadelphia, Pennsylvania, USA.

出版信息

Biophys J. 2012 Oct 17;103(8):L38-40. doi: 10.1016/j.bpj.2012.09.003. Epub 2012 Oct 16.

Abstract

The pathology of sickle cell disease arises from the occlusion of small blood vessels because of polymerization of the sickle hemoglobin within the red cells. We present measurements using a microfluidic method we have developed to determine the pressure required to eject individual red cells from a capillary-sized channel after the cell has sickled. We find that the maximum pressure is only ∼100 Pa, much smaller than typically found in the microcirculation. This explains why experiments using animal models have not observed occlusion beginning in capillaries. The magnitude of the pressure and its dependence on intracellular concentration are both well described as consequences of sickle hemoglobin polymerization acting as a Brownian ratchet. Given the recently determined stiffness of sickle hemoglobin gels, the observed obstruction seen in sickle cell disease as mediated by adherent cells can now be rationalized, and surprisingly suggests a window of maximum vulnerability during circulation of sickle cells.

摘要

镰状细胞病的病理学源于小血管阻塞,这是由于红细胞内镰状血红蛋白聚合所致。我们展示了使用我们开发的微流控方法进行的测量结果,以确定在细胞镰变后从毛细血管大小的通道中排出单个红细胞所需的压力。我们发现最大压力仅约为 100Pa,远小于通常在微循环中发现的压力。这解释了为什么使用动物模型的实验没有观察到从毛细血管开始的阻塞。压力的大小及其对细胞内浓度的依赖性都可以很好地解释为镰状血红蛋白聚合作为布朗棘轮的结果。鉴于最近确定的镰状血红蛋白凝胶的刚性,现在可以通过黏附细胞介导的镰状细胞病中观察到的阻塞来合理化,并且令人惊讶的是,这表明在镰状细胞循环过程中存在最大脆弱性的窗口。

相似文献

1
The physical foundation of vasoocclusion in sickle cell disease.
Biophys J. 2012 Oct 17;103(8):L38-40. doi: 10.1016/j.bpj.2012.09.003. Epub 2012 Oct 16.
2
Metastable polymerization of sickle hemoglobin in droplets.
J Mol Biol. 2007 Jun 22;369(5):1170-4. doi: 10.1016/j.jmb.2007.04.030. Epub 2007 Apr 19.
3
Simultaneous polymerization and adhesion under hypoxia in sickle cell disease.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9473-9478. doi: 10.1073/pnas.1807405115. Epub 2018 Sep 6.
4
Understanding the shape of sickled red cells.
Biophys J. 2005 Feb;88(2):1371-6. doi: 10.1529/biophysj.104.051250. Epub 2004 Nov 12.
5
Sickle Cell Hemoglobin.
Subcell Biochem. 2020;94:297-322. doi: 10.1007/978-3-030-41769-7_12.
8
Knockout-transgenic mouse model of sickle cell disease.
Science. 1997 Oct 31;278(5339):873-6. doi: 10.1126/science.278.5339.873.
9
Dielectric spectroscopy of red blood cells in sickle cell disease.
Electrophoresis. 2021 Mar;42(5):667-675. doi: 10.1002/elps.202000143. Epub 2021 Feb 3.
10
Sickle cell vasoocclusion and rescue in a microfluidic device.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20496-500. doi: 10.1073/pnas.0707122105. Epub 2007 Dec 12.

引用本文的文献

1
Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15018-15027. doi: 10.1073/pnas.1922004117. Epub 2020 Jun 11.
2
Molecular insights into the irreversible mechanical behavior of sickle hemoglobin.
J Biomol Struct Dyn. 2019 Mar;37(5):1270-1281. doi: 10.1080/07391102.2018.1456362. Epub 2018 May 4.
3
Ratchets, red cells, and metastability.
Biophys Rev. 2013 Jun;5(2):217-224. doi: 10.1007/s12551-013-0117-z. Epub 2013 Apr 18.
4
Biomechanics and biorheology of red blood cells in sickle cell anemia.
J Biomech. 2017 Jan 4;50:34-41. doi: 10.1016/j.jbiomech.2016.11.022. Epub 2016 Nov 12.

本文引用的文献

1
Microfluidic chips promise better diagnosis for sickle cell disease.
Nat Med. 2012 Apr 5;18(4):475. doi: 10.1038/nm0412-475.
2
A biophysical indicator of vaso-occlusive risk in sickle cell disease.
Sci Transl Med. 2012 Feb 29;4(123):123ra26. doi: 10.1126/scitranslmed.3002738.
3
The microrheology of sickle hemoglobin gels.
Biophys J. 2010 Aug 9;99(4):1149-56. doi: 10.1016/j.bpj.2010.04.079.
4
Universal metastability of sickle hemoglobin polymerization.
J Mol Biol. 2008 Apr 4;377(4):1228-35. doi: 10.1016/j.jmb.2008.01.083. Epub 2008 Feb 5.
5
Sickle cell vasoocclusion and rescue in a microfluidic device.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20496-500. doi: 10.1073/pnas.0707122105. Epub 2007 Dec 12.
6
Metastable polymerization of sickle hemoglobin in droplets.
J Mol Biol. 2007 Jun 22;369(5):1170-4. doi: 10.1016/j.jmb.2007.04.030. Epub 2007 Apr 19.
7
The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
J Mol Biol. 2007 Jan 12;365(2):425-39. doi: 10.1016/j.jmb.2006.10.001. Epub 2006 Oct 5.
8
Stall, spiculate, or run away: The fate of fibers growing towards fluctuating membranes.
Phys Rev Lett. 2006 Sep 1;97(9):098101. doi: 10.1103/PhysRevLett.97.098101. Epub 2006 Aug 29.
9
Deforming biological membranes: how the cytoskeleton affects a polymerizing fiber.
J Chem Phys. 2006 Jan 14;124(2):024903. doi: 10.1063/1.2148960.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验