Suppr超能文献

尽管活动随时间变化,神经元回路仍能维持持久的表达。

Neuronal circuits underlying persistent representations despite time varying activity.

机构信息

Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20176, USA.

出版信息

Curr Biol. 2012 Nov 20;22(22):2095-103. doi: 10.1016/j.cub.2012.08.058. Epub 2012 Oct 18.

Abstract

BACKGROUND

Our brains are capable of remarkably stable stimulus representations despite time-varying neural activity. For instance, during delay periods in working memory tasks, while stimuli are represented in working memory, neurons in the prefrontal cortex, thought to support the memory representation, exhibit time-varying neuronal activity. Since neuronal activity encodes the stimulus, its time-varying dynamics appears to be paradoxical and incompatible with stable network stimulus representations. Indeed, this finding raises a fundamental question: can stable representations only be encoded with stable neural activity, or, its corollary, is every change in activity a sign of change in stimulus representation?

RESULTS

Here we explain how different time-varying representations offered by individual neurons can be woven together to form a coherent, time-invariant, representation. Motivated by two ubiquitous features of the neocortex-redundancy of neural representation and sparse intracortical connections-we derive a network architecture that resolves the apparent contradiction between representation stability and changing neural activity. Unexpectedly, this network architecture exhibits many structural properties that have been measured in cortical sensory areas. In particular, we can account for few-neuron motifs, synapse weight distribution, and the relations between neuronal functional properties and connection probability.

CONCLUSIONS

We show that the intuition regarding network stimulus representation, typically derived from considering single neurons, may be misleading and that time-varying activity of distributed representation in cortical circuits does not necessarily imply that the network explicitly encodes time-varying properties.

摘要

背景

尽管神经活动随时间变化,我们的大脑仍能够形成稳定的刺激表现。例如,在工作记忆任务的延迟期间,当刺激在工作记忆中被表示时,被认为支持记忆表现的前额叶皮层中的神经元表现出随时间变化的神经元活动。由于神经元活动对刺激进行编码,其随时间变化的动态似乎是矛盾的,与稳定的网络刺激表现不兼容。事实上,这一发现提出了一个基本问题:稳定的表现只能通过稳定的神经活动来编码,还是说,活动的每一次变化都是刺激表现变化的标志?

结果

在这里,我们解释了单个神经元提供的不同随时间变化的表现如何可以编织在一起,形成一个连贯的、不变的表现。受新皮层中两个普遍存在的特征——神经表现的冗余和稀疏的皮质内连接——的启发,我们得出了一种网络架构,该架构解决了表现稳定性和变化的神经活动之间的明显矛盾。出乎意料的是,这种网络架构表现出了许多在皮质感觉区域中已经测量到的结构特性。特别是,我们可以解释少数神经元的模式、突触权重分布,以及神经元功能特性和连接概率之间的关系。

结论

我们表明,关于网络刺激表现的直觉,通常是从单个神经元的角度得出的,可能会产生误导,并且皮质电路中分布式表现的随时间变化的活动不一定意味着网络明确地编码了随时间变化的特性。

相似文献

2
Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex.灵长类前额叶皮层工作记忆的稳定与动态编码
J Neurosci. 2017 Jul 5;37(27):6503-6516. doi: 10.1523/JNEUROSCI.3364-16.2017. Epub 2017 May 30.
4
A self-organizing short-term dynamical memory network.自组织短期动力记忆网络。
Neural Netw. 2018 Oct;106:30-41. doi: 10.1016/j.neunet.2018.06.008. Epub 2018 Jun 20.
5
Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.顶叶和前额叶皮质中的记忆编码与皮质组织
J Neurosci. 2017 Jun 21;37(25):6098-6112. doi: 10.1523/JNEUROSCI.3903-16.2017. Epub 2017 May 24.
9
Persistent activity in neural networks with dynamic synapses.具有动态突触的神经网络中的持续活动。
PLoS Comput Biol. 2007 Feb 23;3(2):e35. doi: 10.1371/journal.pcbi.0030035. Epub 2007 Jan 9.

引用本文的文献

3
Representational drift without synaptic plasticity.无突触可塑性的表征漂移。
bioRxiv. 2025 Jul 29:2025.07.23.666352. doi: 10.1101/2025.07.23.666352.
6
Separating cognitive and motor processes in the behaving mouse.在行为小鼠中分离认知和运动过程。
Nat Neurosci. 2025 Mar;28(3):640-653. doi: 10.1038/s41593-024-01859-1. Epub 2025 Feb 4.
9
A combinatorial neural code for long-term motor memory.一种用于长期运动记忆的组合神经编码。
Nature. 2025 Jan;637(8046):663-672. doi: 10.1038/s41586-024-08193-3. Epub 2024 Nov 13.

本文引用的文献

1
Ultrafast population encoding by cortical neurons.皮层神经元的超快速群体编码。
J Neurosci. 2011 Aug 24;31(34):12171-9. doi: 10.1523/JNEUROSCI.2182-11.2011.
5
A synaptic organizing principle for cortical neuronal groups.皮层神经元群的突触组织原则。
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5419-24. doi: 10.1073/pnas.1016051108. Epub 2011 Mar 7.
6
Spike-based population coding and working memory.基于尖峰的群体编码与工作记忆。
PLoS Comput Biol. 2011 Feb;7(2):e1001080. doi: 10.1371/journal.pcbi.1001080. Epub 2011 Feb 17.
8
Semi-automated reconstruction of neural circuits using electron microscopy.使用电子显微镜进行神经回路的半自动重建。
Curr Opin Neurobiol. 2010 Oct;20(5):667-75. doi: 10.1016/j.conb.2010.08.002. Epub 2010 Sep 15.
9
Neuronal population coding of parametric working memory.参数工作记忆的神经元群体编码。
J Neurosci. 2010 Jul 14;30(28):9424-30. doi: 10.1523/JNEUROSCI.1875-10.2010.
10
Decoding a perceptual decision process across cortex.跨皮层解码知觉决策过程。
Neuron. 2010 Apr 29;66(2):300-14. doi: 10.1016/j.neuron.2010.03.031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验