Department of Cognitive and Psychological Sciences, Brown University, Rhode Island, US.
RIKEN Center for Brain Science, Wako, Saitama, Japan.
Nat Commun. 2024 Oct 1;15(1):8513. doi: 10.1038/s41467-024-52777-6.
Flexible action selection requires cognitive control mechanisms capable of mapping the same inputs to different output actions depending on the context. From a neural state-space perspective, this requires a control representation that separates similar input neural states by context. Additionally, for action selection to be robust and time-invariant, information must be stable in time, enabling efficient readout. Here, using EEG decoding methods, we investigate how the geometry and dynamics of control representations constrain flexible action selection in the human brain. Participants performed a context-dependent action selection task. A forced response procedure probed action selection different states in neural trajectories. The result shows that before successful responses, there is a transient expansion of representational dimensionality that separated conjunctive subspaces. Further, the dynamics stabilizes in the same time window, with entry into this stable, high-dimensional state predictive of individual trial performance. These results establish the neural geometry and dynamics the human brain needs for flexible control over behavior.
灵活的动作选择需要认知控制机制,这些机制能够根据上下文将相同的输入映射到不同的输出动作。从神经状态空间的角度来看,这需要一种控制表示形式,该表示形式可以根据上下文将相似的输入神经状态分开。此外,为了使动作选择具有鲁棒性和时间不变性,信息必须在时间上保持稳定,从而能够实现高效的读取。在这里,我们使用 EEG 解码方法研究了控制表示的几何形状和动力学如何约束人类大脑中的灵活动作选择。参与者执行了一个依赖于上下文的动作选择任务。强制响应程序探测了神经轨迹中不同的动作选择状态。结果表明,在成功响应之前,代表维度会短暂扩展,从而将联合子空间分开。此外,动力学在同一时间窗口内稳定下来,进入这个稳定的高维状态可以预测个体试验的表现。这些结果确立了人类大脑在行为控制方面所需的神经几何形状和动力学。