Haimerl Caroline, Machens Christian
Champalimaud Centre for the Unknown, Lisbon, Portugal.
bioRxiv. 2025 Jul 29:2025.07.23.666352. doi: 10.1101/2025.07.23.666352.
Neural computations support stable behavior despite relying on many dynamically changing biological processes. One such process is representational drift (RD), in which neurons' responses change over the timescale of minutes to weeks, while perception and behavior remain unchanged. Generally, RD is believed to be caused by changes in synaptic weights, which alter individual neurons' tuning properties. Since these changes alter the population readout, they require adaptation of downstream areas to maintain stable function, a costly and non-local problem. Here we propose that much of the observed drift phenomena can be explained by a simpler mechanism: changes in the excitability of cells without changes in synaptic weights. We show that such excitability changes can change the apparent tuning of neurons without requiring adaptation of population readouts in downstream areas. We use spike coding networks (SCN) to show that the extent of these tuning shifts matches experimentally observed changes. Moreover, specific decoders trained on one excitability setting perform poorly on others, while a general decoder can perform close to optimal across excitability changes if trained across many days. Our work proposes a simple mechanism without synaptic plasticity that explains experimentally observed RD, while downstream decoding and, by extension, behavior remain stable.
尽管依赖于许多动态变化的生物学过程,但神经计算仍支持稳定的行为。其中一个这样的过程是表征漂移(RD),即神经元的反应在数分钟到数周的时间尺度上发生变化,而感知和行为却保持不变。一般来说,RD被认为是由突触权重的变化引起的,这些变化会改变单个神经元的调谐特性。由于这些变化会改变群体读出,因此需要下游区域进行适应以维持稳定的功能,这是一个代价高昂且非局部的问题。在这里,我们提出,许多观察到的漂移现象可以用一种更简单的机制来解释:细胞兴奋性的变化而突触权重不变。我们表明,这种兴奋性变化可以改变神经元的表观调谐,而无需下游区域对群体读出进行适应。我们使用尖峰编码网络(SCN)来表明这些调谐偏移的程度与实验观察到的变化相匹配。此外,在一种兴奋性设置下训练的特定解码器在其他设置下表现不佳,而如果在许多天内进行训练,通用解码器在兴奋性变化时可以接近最优地执行。我们的工作提出了一种没有突触可塑性的简单机制,该机制解释了实验观察到的RD,而下游解码以及由此延伸的行为保持稳定。