Suppr超能文献

Nrf2 的缺失通过上调 RANKL 加速了电离辐射诱导的骨丢失。

Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL.

机构信息

Department of Radiation Oncology 1161 21st Avenue S MCN DD1218 Nashville, TN 37232 United States.

Department of Radiation Oncology 1161 21st Avenue S MCN DD1218 Nashville, TN 37232 United States; Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Free Radic Biol Med. 2012 Dec 15;53(12):2298-307. doi: 10.1016/j.freeradbiomed.2012.10.536. Epub 2012 Oct 22.

Abstract

Radiation therapy is an integral part of treatment for cancer patients; however, major side effects of this modality include aberrant bone remodeling and bone loss. Ionizing radiation (IR) is a major external factor that contributes to a significant increase in oxidative stress such as reactive oxygen species (ROS), has been implicated in osteoporotic phenotypes, and has been implicated in osteoporotic phenotypes, bone loss, and fracture risk. One of the major cellular defenses against heightened oxidative stress is mediated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master transcription factor that regulates induction of antioxidant gene expression and phase II antioxidant enzymes. Our objective was to test the hypothesis that loss of functional Nrf2 increases radiation-induced bone loss. We irradiated (single dose, 20Gy) the hindlegs of age- and sex-matched Nrf2(+/+) and Nrf2(-/-) mice. After 1 month, microCT analysis and histology revealed a drastic overall decrease in the bone volume after irradiation of mice lacking Nrf2. Although radiation exposure led to bone loss in mice with intact Nrf2, it was dramatically enhanced by loss of Nrf2. Furthermore, in the absence of Nrf2, a decrease in osteoblast mineralization was noted in calvarial osteoblasts compared with wild-type controls, and treatment with a common antioxidant, N-acetyl-l-cysteine (NAC), was able to rescue the mineralization. As expected, we observed a higher number of osteoclasts in Nrf2(-/-) mice compared to Nrf2(+/+) mice, and after irradiation, the trend remained the same. RT-PCR analysis of calvarial osteoblasts revealed that in the absence of Nrf2, the expression of RANKL was increased after irradiation. Interestingly, RANKL expression was suppressed when the calvarial osteoblasts were treated with NAC before IR exposure. Taken together, our data suggest that loss of Nrf2 leads to heightened oxidative stress and increased susceptibility to radiation-induced bone loss.

摘要

放射治疗是癌症患者治疗的一个组成部分;然而,这种治疗方式的主要副作用包括异常的骨骼重塑和骨质流失。电离辐射(IR)是导致氧化应激显著增加的主要外部因素之一,如活性氧(ROS),与骨质疏松表型有关,并与骨质疏松表型、骨质流失和骨折风险有关。核因子(红系衍生 2 样 2)(Nrf2)是一种主要的细胞防御机制,可调节抗氧化基因表达和 II 期抗氧化酶的诱导。我们的目的是验证 Nrf2 功能丧失会增加放射诱导的骨质流失这一假设。我们对年龄和性别匹配的 Nrf2(+/+)和 Nrf2(-/-)小鼠的后腿进行单次照射(20Gy)。1 个月后,微 CT 分析和组织学显示,Nrf2 缺失的小鼠在照射后整体骨量明显减少。尽管辐射暴露导致 Nrf2 完整的小鼠发生骨质流失,但 Nrf2 缺失会显著增强这种情况。此外,在缺乏 Nrf2 的情况下,与野生型对照相比,颅骨成骨细胞的矿化减少,而常用抗氧化剂 N-乙酰-L-半胱氨酸(NAC)的治疗能够挽救矿化。正如预期的那样,与 Nrf2(+/+)小鼠相比,我们观察到 Nrf2(-/-)小鼠中的破骨细胞数量更多,并且在照射后这种趋势仍然存在。颅骨成骨细胞的 RT-PCR 分析显示,在缺乏 Nrf2 的情况下,RANKL 的表达在照射后增加。有趣的是,当颅骨成骨细胞在 IR 暴露前用 NAC 处理时,RANKL 表达受到抑制。综上所述,我们的数据表明 Nrf2 的缺失会导致氧化应激加剧,并增加对放射诱导的骨质流失的易感性。

相似文献

1
Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL.
Free Radic Biol Med. 2012 Dec 15;53(12):2298-307. doi: 10.1016/j.freeradbiomed.2012.10.536. Epub 2012 Oct 22.
2
Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation.
Free Radic Biol Med. 2013 Dec;65:789-799. doi: 10.1016/j.freeradbiomed.2013.08.005. Epub 2013 Aug 14.
3
Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic.
Toxicol Appl Pharmacol. 2019 Mar 15;367:62-70. doi: 10.1016/j.taap.2019.02.003. Epub 2019 Feb 8.
6
Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway.
Mol Cell Biochem. 2015 Dec;410(1-2):255-66. doi: 10.1007/s11010-015-2559-z. Epub 2015 Sep 7.
9
Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue.
J Interferon Cytokine Res. 2015 Jun;35(6):480-7. doi: 10.1089/jir.2014.0152. Epub 2015 Mar 3.
10
Icariin ameliorates osteoporosis in ovariectomized rats by targeting Cullin 3/Nrf2/OH pathway for osteoclast inhibition.
Biomed Pharmacother. 2024 Apr;173:116422. doi: 10.1016/j.biopha.2024.116422. Epub 2024 Mar 11.

引用本文的文献

2
Divergent Requirements for Glutathione Biosynthesis During Osteoclast Differentiation In Vitro and In Vivo.
Antioxidants (Basel). 2025 Feb 10;14(2):197. doi: 10.3390/antiox14020197.
3
Hyperbaric Oxygen Therapy for the Treatment of Bone-Related Diseases.
Int J Mol Sci. 2025 Jan 26;26(3):1067. doi: 10.3390/ijms26031067.
4
Osteoporosis under psychological stress: mechanisms and therapeutics.
Life Med. 2024 Mar 7;3(1):lnae009. doi: 10.1093/lifemedi/lnae009. eCollection 2024 Feb.
5
Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis.
Nutrients. 2025 Jan 13;17(2):267. doi: 10.3390/nu17020267.
6
Transcriptomic Characterization Reveals Mitochondrial Involvement in Nrf2/Keap1-Mediated Osteoclastogenesis.
Antioxidants (Basel). 2024 Dec 20;13(12):1575. doi: 10.3390/antiox13121575.
7
NRF2 in age-related musculoskeletal diseases: Role and treatment prospects.
Genes Dis. 2023 Nov 27;11(6):101180. doi: 10.1016/j.gendis.2023.101180. eCollection 2024 Nov.
8
Managing Oxidative Stress Using Vitamin C to Improve Biocompatibility of Polycaprolactone for Bone Regeneration .
ACS Omega. 2024 Jul 12;9(29):31776-31788. doi: 10.1021/acsomega.4c02858. eCollection 2024 Jul 23.
9
Redox Pathogenesis in Rheumatic Diseases.
ACR Open Rheumatol. 2024 Jun;6(6):334-346. doi: 10.1002/acr2.11668. Epub 2024 Apr 25.
10
The influence of uremic toxins on low bone turnover disease in chronic kidney disease.
Tzu Chi Med J. 2023 Dec 13;36(1):38-45. doi: 10.4103/tcmj.tcmj_212_23. eCollection 2024 Jan-Mar.

本文引用的文献

1
Implementation of a lung radiosurgery program: technical considerations and quality assurance in an Australian institution.
J Med Imaging Radiat Oncol. 2012 Jun;56(3):354-61. doi: 10.1111/j.1754-9485.2012.02367.x. Epub 2012 Apr 10.
2
Anti-transforming growth factor ß antibody treatment rescues bone loss and prevents breast cancer metastasis to bone.
PLoS One. 2011;6(11):e27090. doi: 10.1371/journal.pone.0027090. Epub 2011 Nov 11.
3
Rapid loss of bone mass and strength in mice after abdominal irradiation.
Radiat Res. 2011 Nov;176(5):624-35. doi: 10.1667/rr2505.1. Epub 2011 Aug 22.
4
Nrf2 activation diminishes during adipocyte differentiation of ST2 cells.
Int J Mol Med. 2011 Nov;28(5):823-8. doi: 10.3892/ijmm.2011.761. Epub 2011 Jul 29.
5
NRF2 deficiency reduces life span of mice administered thoracic irradiation.
Free Radic Biol Med. 2011 Sep 15;51(6):1175-83. doi: 10.1016/j.freeradbiomed.2011.05.038. Epub 2011 Jun 12.
6
Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1609-14. doi: 10.1073/pnas.1015350108. Epub 2011 Jan 10.
7
Ionizing radiation activates the Nrf2 antioxidant response.
Cancer Res. 2010 Nov 1;70(21):8886-95. doi: 10.1158/0008-5472.CAN-10-0171. Epub 2010 Oct 12.
8
Local irradiation alters bone morphology and increases bone fragility in a mouse model.
J Biomech. 2010 Oct 19;43(14):2738-46. doi: 10.1016/j.jbiomech.2010.06.017. Epub 2010 Jul 23.
10
Bone mineral density after concurrent chemoradiation in patients with uterine cervical cancer.
Menopause. 2010 Mar;17(2):416-20. doi: 10.1097/gme.0b013e3181b9b11f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验