Ryerson University, Department of Physics, Toronto, Canada.
J Biomed Opt. 2012 Sep;17(9):96016-1. doi: 10.1117/1.JBO.17.9.096016.
Perfluorocarbon droplets containing nanoparticles (NPs) have recently been investigated as theranostic and dual-mode contrast agents. These droplets can be vaporized via laser irradiation or used as photoacoustic contrast agents below the vaporization threshold. This study investigates the photoacoustic mechanism of NP-loaded droplets using photoacoustic frequencies between 100 and 1000 MHz, where distinct spectral features are observed that are related to the droplet composition. The measured photoacoustic spectrum from NP-loaded perfluorocarbon droplets was compared to a theoretical model that assumes a homogenous liquid. Good agreement in the location of the spectral features was observed, which suggests the NPs act primarily as optical absorbers to induce thermal expansion of the droplet as a single homogenous object. The NP size and composition do not affect the photoacoustic spectrum; therefore, the photoacoustic signal can be maximized by optimizing the NP optical absorbing properties. To confirm the theoretical parameters in the model, photoacoustic, ultrasonic, and optical methods were used to estimate the droplet diameter. Photoacoustic and ultrasonic methods agreed to within 1.4%, while the optical measurement was 8.5% higher; this difference decreased with increasing droplet size. The small discrepancy may be attributed to the difficulty in observing the small droplets through the partially translucent phantom.
载有纳米颗粒 (NPs) 的全氟碳液滴最近被研究作为治疗诊断两用和双模式对比剂。这些液滴可以通过激光辐射蒸发,也可以在低于蒸发阈值的情况下用作光声对比剂。本研究使用在 100 到 1000MHz 之间的光声频率研究载有 NPs 的液滴的光声机制,在该处观察到与液滴成分相关的明显光谱特征。将载有 NP 的全氟碳液滴的测量光声光谱与假设为均匀液体的理论模型进行比较。观察到光谱特征的位置非常吻合,这表明 NPs 主要作为光吸收体,将液滴作为单个均匀物体诱导热膨胀。NP 的大小和组成不影响光声光谱;因此,可以通过优化 NP 的光学吸收特性来最大化光声信号。为了确认模型中的理论参数,使用光声、超声和光学方法来估计液滴直径。光声和超声方法的结果相差在 1.4%以内,而光学测量的结果则高出 8.5%;随着液滴尺寸的增加,这种差异会减小。这种小差异可能归因于在部分半透明体模中观察小液滴的困难。
Phys Med Biol. 2014-10-7
Biomed Opt Express. 2011-6-1
Ultrasound Med Biol. 2014-3
Biochem Biophys Res Commun. 2018-5-25
J Acoust Soc Am. 2015-12
Photoacoustics. 2021-7-21
IEEE Trans Ultrason Ferroelectr Freq Control. 2021-12
Biomed Res Int. 2019-7-14
Sci Rep. 2019-3-18
IEEE Trans Ultrason Ferroelectr Freq Control. 2016-10-20
Ultrasonography. 2016-8-30