Suppr超能文献

使用点扩散函数模板校正 SPECT 中的准直器-探测器响应。

Correction for collimator-detector response in SPECT using point spread function template.

机构信息

Department of Electrical Engineering and Computer Science and Radiology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Trans Med Imaging. 2013 Feb;32(2):295-305. doi: 10.1109/TMI.2012.2225441. Epub 2012 Oct 18.

Abstract

Compensating for the collimator-detector response (CDR) in SPECT is important for accurate quantification. The CDR consists of both a geometric response and a septal penetration and collimator scatter response. The geometric response can be modeled analytically and is often used for modeling the whole CDR if the geometric response dominates. However, for radionuclides that emit medium or high-energy photons such as I-131, the septal penetration and collimator scatter response is significant and its modeling in the CDR correction is important for accurate quantification. There are two main methods for modeling the depth-dependent CDR so as to include both the geometric response and the septal penetration and collimator scatter response. One is to fit a Gaussian plus exponential function that is rotationally invariant to the measured point source response at several source-detector distances. However, a rotationally-invariant exponential function cannot represent the star-shaped septal penetration tails in detail. Another is to perform Monte-Carlo (MC) simulations to generate the depth-dependent point spread functions (PSFs) for all necessary distances. However, MC simulations, which require careful modeling of the SPECT detector components, can be challenging and accurate results may not be available for all of the different SPECT scanners in clinics. In this paper, we propose an alternative approach to CDR modeling. We use a Gaussian function plus a 2-D B-spline PSF template and fit the model to measurements of an I-131 point source at several distances. The proposed PSF-template-based approach is nearly non-parametric, captures the characteristics of the septal penetration tails, and minimizes the difference between the fitted and measured CDR at the distances of interest. The new model is applied to I-131 SPECT reconstructions of experimental phantom measurements, a patient study, and a MC patient simulation study employing the XCAT phantom. The proposed model yields up to a 16.5 and 10.8% higher recovery coefficient compared to the results with the conventional Gaussian model and the Gaussian plus exponential model, respectively.

摘要

补偿单光子发射型计算机断层成像术(SPECT)中的准直器-探测器响应(CDR)对于准确量化非常重要。CDR 由几何响应和隔室穿透以及准直器散射响应组成。如果几何响应占主导地位,则可以对几何响应进行分析建模,并且通常用于对整个 CDR 进行建模。然而,对于发射中能或高能光子的放射性核素,例如 I-131,隔室穿透和准直器散射响应非常重要,因此在 CDR 校正中对其进行建模对于准确量化非常重要。有两种主要的方法可以对深度相关的 CDR 进行建模,以包括几何响应和隔室穿透以及准直器散射响应。一种是拟合旋转不变的高斯加指数函数,以拟合几个源-探测器距离处测量的点源响应。然而,旋转不变的指数函数无法详细表示星状隔室穿透尾部。另一种是进行蒙特卡罗(MC)模拟,以生成所有必要距离的深度相关点扩散函数(PSF)。然而,需要仔细建模 SPECT 探测器组件的 MC 模拟可能具有挑战性,并且并非所有临床中的不同 SPECT 扫描仪都可以获得准确的结果。在本文中,我们提出了一种替代 CDR 建模的方法。我们使用高斯函数加二维 B 样条 PSF 模板,并根据在几个距离处测量的 I-131 点源拟合模型。所提出的基于 PSF 模板的方法几乎是非参数的,可捕获隔室穿透尾部的特征,并最小化感兴趣距离处拟合和测量 CDR 之间的差异。新模型应用于实验体模测量、患者研究和使用 XCAT 体模的 MC 患者模拟研究的 I-131 SPECT 重建。与使用传统高斯模型和高斯加指数模型相比,新模型的恢复系数分别提高了 16.5%和 10.8%。

相似文献

1
Correction for collimator-detector response in SPECT using point spread function template.
IEEE Trans Med Imaging. 2013 Feb;32(2):295-305. doi: 10.1109/TMI.2012.2225441. Epub 2012 Oct 18.
2
Fast modelling of the collimator-detector response in Monte Carlo simulation of SPECT imaging using the angular response function.
Phys Med Biol. 2005 Apr 21;50(8):1791-804. doi: 10.1088/0031-9155/50/8/011. Epub 2005 Apr 6.
5
A parallel-cone collimator for high-energy SPECT.
J Nucl Med. 2015 Mar;56(3):476-82. doi: 10.2967/jnumed.114.149658. Epub 2015 Feb 5.
6
Evaluation of quantitative (90)Y SPECT based on experimental phantom studies.
Phys Med Biol. 2008 Oct 21;53(20):5689-703. doi: 10.1088/0031-9155/53/20/008. Epub 2008 Sep 24.
7
Characterization of septal penetration in 511 keV SPECT.
Nucl Med Commun. 2006 Nov;27(11):901-9. doi: 10.1097/01.mnm.0000239478.46157.64.
10
A Monte Carlo study for optimizing the detector of SPECT imaging using a XCAT human phantom.
Nucl Med Rev Cent East Eur. 2017;20(1):10-14. doi: 10.5603/NMR.2017.0001.

引用本文的文献

2
A review of state-of-the-art resolution improvement techniques in SPECT imaging.
EJNMMI Phys. 2025 Jan 30;12(1):9. doi: 10.1186/s40658-025-00724-9.
4
Image-guided patient-specific optimization of catheter placement for convection-enhanced nanoparticle delivery in recurrent glioblastoma.
Comput Biol Med. 2024 Sep;179:108889. doi: 10.1016/j.compbiomed.2024.108889. Epub 2024 Jul 19.
5
Characterization of accurate 3D collimator-detector response function for single- and multi-lofthole collimated SPECT cameras.
Jpn J Radiol. 2024 Nov;42(11):1330-1341. doi: 10.1007/s11604-024-01624-1. Epub 2024 Jul 2.
6
Resolution recovery on list mode MLEM reconstruction for dynamic cardiac SPECT system.
Biomed Phys Eng Express. 2023 Dec 5;10(1). doi: 10.1088/2057-1976/ad0f40.
7
Validation of Tc and Lu quantification parameters for a Monte Carlo modelled gamma camera.
EJNMMI Phys. 2023 Apr 8;10(1):27. doi: 10.1186/s40658-023-00547-6.
8
In silico simulation of hepatic arteries: An open-source algorithm for efficient synthetic data generation.
Med Phys. 2023 Sep;50(9):5505-5517. doi: 10.1002/mp.16379. Epub 2023 Apr 5.
9
Biodistribution and dosimetry for combined [Lu]Lu-PSMA-I&T/[Ac]Ac-PSMA-I&T therapy using multi-isotope quantitative SPECT imaging.
Eur J Nucl Med Mol Imaging. 2023 Apr;50(5):1280-1290. doi: 10.1007/s00259-022-06092-1. Epub 2023 Jan 11.
10
Comparison of Y SIRT predicted and delivered absorbed doses using a PSF conversion method.
Phys Med. 2021 Sep;89:1-10. doi: 10.1016/j.ejmp.2021.07.026. Epub 2021 Jul 30.

本文引用的文献

1
Accurate Coregistration between Ultra-High-Resolution Micro-SPECT and Circular Cone-Beam Micro-CT Scanners.
Int J Biomed Imaging. 2010;2010:654506. doi: 10.1155/2010/654506. Epub 2010 Oct 5.
2
FastSPECT II: A Second-Generation High-Resolution Dynamic SPECT Imager.
IEEE Trans Nucl Sci. 2004 Jun;51(3):631-635. doi: 10.1109/TNS.2004.830975.
3
Fast simulation of yttrium-90 bremsstrahlung photons with GATE.
Med Phys. 2010 Jun;37(6):2943-50. doi: 10.1118/1.3431998.
5
Regularized reconstruction in quantitative SPECT using CT side information from hybrid imaging.
Phys Med Biol. 2010 May 7;55(9):2523-39. doi: 10.1088/0031-9155/55/9/007. Epub 2010 Apr 14.
6
3-D Monte Carlo-Based Scatter Compensation in Quantitative I-131 SPECT Reconstruction.
IEEE Trans Nucl Sci. 2006;53(1):181. doi: 10.1109/TNS.2005.862956.
7
U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-Animal Imaging.
J Nucl Med. 2009 Apr;50(4):599-605. doi: 10.2967/jnumed.108.056606. Epub 2009 Mar 16.
8
Realistic CT simulation using the 4D XCAT phantom.
Med Phys. 2008 Aug;35(8):3800-8. doi: 10.1118/1.2955743.
9
10
Fast hybrid SPECT simulation including efficient septal penetration modelling (SP-PSF).
Phys Med Biol. 2007 Jun 7;52(11):3027-43. doi: 10.1088/0031-9155/52/11/007. Epub 2007 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验