Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Department of Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Med Phys. 2023 Sep;50(9):5505-5517. doi: 10.1002/mp.16379. Epub 2023 Apr 5.
In silico testing of novel image reconstruction and quantitative algorithms designed for interventional imaging requires realistic high-resolution modeling of arterial trees with contrast dynamics. Furthermore, data synthesis for training of deep learning algorithms requires that an arterial tree generation algorithm be computationally efficient and sufficiently random.
The purpose of this paper is to provide a method for anatomically and physiologically motivated, computationally efficient, random hepatic arterial tree generation.
The vessel generation algorithm uses a constrained constructive optimization approach with a volume minimization-based cost function. The optimization is constrained by the Couinaud liver classification system to assure a main feeding artery to each Couinaud segment. An intersection check is included to guarantee non-intersecting vasculature and cubic polynomial fits are used to optimize bifurcation angles and to generate smoothly curved segments. Furthermore, an approach to simulate contrast dynamics and respiratory and cardiac motion is also presented.
The proposed algorithm can generate a synthetic hepatic arterial tree with 40 000 branches in 11 s. The high-resolution arterial trees have realistic morphological features such as branching angles (MAD with Murray's law ), radii (median Murray deviation ), and smoothly curved, non-intersecting vessels. Furthermore, the algorithm assures a main feeding artery to each Couinaud segment and is random (variability = 0.98 ± 0.01).
This method facilitates the generation of large datasets of high-resolution, unique hepatic angiograms for the training of deep learning algorithms and initial testing of novel 3D reconstruction and quantitative algorithms designed for interventional imaging.
用于介入成像的新型图像重建和定量算法的计算机测试需要具有对比动力学的动脉树的逼真高分辨率建模。此外,用于训练深度学习算法的数据合成要求动脉树生成算法具有计算效率并且足够随机。
本文旨在提供一种用于解剖学和生理学驱动、计算效率高、随机的肝动脉树生成的方法。
该血管生成算法使用基于体积最小化的成本函数的约束构造优化方法。优化受到 Couinaud 肝分类系统的约束,以确保每个 Couinaud 节段都有一条主要供养动脉。包括交叉检查以确保血管不交叉,并使用三次多项式拟合来优化分支角度并生成平滑弯曲的段。此外,还提出了一种模拟对比动力学以及呼吸和心脏运动的方法。
所提出的算法可以在 11 秒内生成具有 40000 个分支的合成肝动脉树。高分辨率的动脉树具有真实的形态特征,例如分支角度(与 Murray 定律的 MAD )、半径(中位数 Murray 偏差 )以及平滑弯曲、不交叉的血管。此外,该算法确保了每个 Couinaud 节段的主要供养动脉,并具有随机性(变异性为 0.98±0.01)。
该方法为用于训练深度学习算法和初步测试专为介入成像设计的新型 3D 重建和定量算法的高分辨率、独特的肝血管造影数据集的生成提供了便利。