Suppr超能文献

一种用于具有客户退货的多供应商闭环选址库存问题的改进混合人工蜂群算法。

An improved hybrid artificial bee colony algorithm for a multi-supplier closed-loop location inventory problem with customer returns.

作者信息

Guo Hao, Lai Xiaomei, Guo Ju, You Ge, Alnafrah Ibrahim

机构信息

School of Management, Wuhan Textile University, Wuhan, Hubei, China.

Research Center of Enterprise Decision Support, Key Research Institute of Humanities and Social Sciences in Universities of Hubei Province, Wuhan, Hubei, China.

出版信息

PLoS One. 2025 May 22;20(5):e0324343. doi: 10.1371/journal.pone.0324343. eCollection 2025.

Abstract

Customer returns are an unavoidable and increasingly costly challenge in business operations, especially in online marketplaces. This study addresses this issue by introducing a practical multi-supplier closed-loop location-inventory problem (CLLIP) that incorporates customer returns. The objective of the CLLIP is to minimize overall supply chain costs by optimizing facility location and inventory management strategies. To solve this complex problem, an improved hybrid artificial bee colony algorithm (IHABC) is proposed, which integrates two novel search equations to generate candidate solutions during the employed bee and onlooker bee phases, effectively balancing exploration and exploitation. The performance of IHABC is evaluated against various artificial bee colony variants as well as the commercial solver Lingo. The results of numerical experiments demonstrate that IHABC consistently outperforms competing methods, achieving superior solutions with the lowest mean values and optimal total cost results, while also requiring less computation time. The results of numerical experiments demonstrate that IHABC consistently outperforms competing methods, achieving up to 29.97% improvement in solution quality over the standard ABC algorithm. These findings confirm that IHABC is a highly effective and efficient tool for solving the proposed CLLIP. Furthermore, a sensitivity analysis is conducted to provide actionable insights, enabling managers to make informed and strategic decisions in real-world supply chain operations.

摘要

客户退货是商业运营中不可避免且成本日益高昂的挑战,尤其是在在线市场中。本研究通过引入一个实际的多供应商闭环选址 - 库存问题(CLLIP)来解决这一问题,该问题纳入了客户退货情况。CLLIP的目标是通过优化设施选址和库存管理策略,使整个供应链成本最小化。为了解决这个复杂问题,提出了一种改进的混合人工蜂群算法(IHABC),它在雇佣蜂和旁观蜂阶段集成了两个新颖的搜索方程来生成候选解,有效地平衡了探索和利用。将IHABC的性能与各种人工蜂群变体以及商业求解器Lingo进行了评估。数值实验结果表明,IHABC始终优于竞争方法,以最低的平均值和最优的总成本结果获得了卓越的解,同时所需的计算时间也更少。数值实验结果表明,IHABC始终优于竞争方法,与标准ABC算法相比,解的质量提高了高达29.97%。这些发现证实,IHABC是解决所提出的CLLIP的一种高效工具。此外,还进行了敏感性分析以提供可操作的见解,使管理者能够在实际供应链运营中做出明智的战略决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50e7/12097797/57e07953ccdf/pone.0324343.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验