Suppr超能文献

偏最小二乘法:偏最小二乘相关分析和偏最小二乘回归分析。

Partial least squares methods: partial least squares correlation and partial least square regression.

作者信息

Abdi Hervé, Williams Lynne J

机构信息

School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.

出版信息

Methods Mol Biol. 2013;930:549-79. doi: 10.1007/978-1-62703-059-5_23.

Abstract

Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the approach is equivalent to a correlation problem and the technique is then called partial least square correlation (PLSC) (also sometimes called PLS-SVD). In this case there are two sets of latent variables (one set per table), and these latent variables are required to have maximal covariance. When the goal is to predict one data table the other one, the technique is then called partial least square regression. In this case there is one set of latent variables (derived from the predictor table) and these latent variables are required to give the best possible prediction. In this paper we present and illustrate PLSC and PLSR and show how these descriptive multivariate analysis techniques can be extended to deal with inferential questions by using cross-validation techniques such as the bootstrap and permutation tests.

摘要

偏最小二乘法(PLS)(有时也称为潜在结构投影法)用于关联两个数据表中的信息,这两个数据表收集了对同一组观测对象的测量数据。PLS方法通过推导潜在变量来进行,这些潜在变量是数据表变量的(最优)线性组合。当目标是找到两个表之间的共享信息时,该方法等同于一个相关性问题,此时该技术称为偏最小二乘相关性(PLSC)(有时也称为PLS-SVD)。在这种情况下,有两组潜在变量(每个表一组),并且要求这些潜在变量具有最大协方差。当目标是根据一个数据表预测另一个数据表时,该技术称为偏最小二乘回归。在这种情况下,有一组潜在变量(从预测表中推导得出),并且要求这些潜在变量给出尽可能好的预测。在本文中,我们介绍并阐述了PLSC和PLSR,并展示了如何通过使用自助法和置换检验等交叉验证技术,将这些描述性多变量分析技术扩展到处理推断性问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验