Suppr超能文献

生物与人工智能系统中的脑间神经动力学

Inter-brain neural dynamics in biological and artificial intelligence systems.

作者信息

Zhang Xingjian, Phi Nguyen, Li Qin, Gorzek Ryan, Zwingenberger Niklas, Huang Shan, Zhou John L, Kingsbury Lyle, Raam Tara, Wu Ye Emily, Wei Don, Kao Jonathan C, Hong Weizhe

机构信息

Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09196-4.

Abstract

Social interaction can be regarded as a dynamic feedback loop between interacting individuals as they act and react to each other. Here, to understand the neural basis of these interactions, we investigated inter-brain neural dynamics across individuals in both mice and artificial intelligence systems. By measuring activities of molecularly defined neurons in the dorsomedial prefrontal cortex of socially interacting mice, we find that the multi-dimensional neural space within each individual can be partitioned into two distinct subspaces-a shared neural subspace that represents shared neural dynamics across animals and a unique neural subspace that represents activity unique to each animal. Notably, compared with glutamatergic neurons, GABAergic (γ-aminobutyric acid-producing) neurons in the dorsomedial prefrontal cortex contain a considerably larger shared neural subspace, which arises from behaviours of both self and others. We extended this framework to artificial intelligence agents and observed that, as social interactions emerged, so too did shared neural dynamics between interacting agents. Importantly, selectively disrupting the neural components that contribute to shared neural dynamics substantially reduces the agents' social actions. Our findings suggest that shared neural dynamics represent a fundamental and generalizable feature of interacting neural systems present in both biological and artificial agents and highlight the functional significance of shared neural dynamics in driving social interactions.

摘要

社会互动可被视为相互作用的个体之间的动态反馈回路,因为他们彼此行动并做出反应。在此,为了理解这些互动的神经基础,我们研究了小鼠和人工智能系统中个体间的脑间神经动力学。通过测量社交互动小鼠背内侧前额叶皮层中分子定义神经元的活动,我们发现每个个体内的多维神经空间可分为两个不同的子空间——一个共享神经子空间,代表动物间共享的神经动力学,以及一个独特神经子空间,代表每个动物特有的活动。值得注意的是,与谷氨酸能神经元相比,背内侧前额叶皮层中的γ-氨基丁酸能神经元包含相当大的共享神经子空间,这源于自我和他人的行为。我们将此框架扩展到人工智能主体,并观察到,随着社会互动的出现,互动主体之间也出现了共享神经动力学。重要的是,选择性破坏对共享神经动力学有贡献的神经成分会大幅减少主体的社会行为。我们的研究结果表明,共享神经动力学代表了生物和人工主体中相互作用神经系统的一个基本且可推广的特征,并突出了共享神经动力学在驱动社会互动中的功能意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验