Rao Anil, Aljabar Paul, Rueckert Daniel
Visual Information Processing, Department of Computing, Imperial College London, 180 Queens's Gate, London SW7 2BZ, UK.
Med Image Anal. 2008 Feb;12(1):55-68. doi: 10.1016/j.media.2007.06.006. Epub 2007 Jun 28.
In this paper, we describe how two multivariate statistical techniques can be used to investigate how different structures within the brain vary statistically relative to each other. The first of these techniques is canonical correlation analysis which extracts and quantifies correlated behaviour between two sets of vector variables. The second technique is partial least squares regression which determines the best factors within a first set of vector variables for predicting a vector variable from a second set. We applied these techniques to 178 sets of 3D MR images of the brain to quantify and predict correlated behaviour between 18 sub-cortical structures. Pairwise canonical correlation analysis of the structures gave correlation coefficients between 0.51 and 0.67, with adjacent structures possessing the strongest correlations. Pairwise predictions of the structures using partial least squares regression produced an overall sum squared error of 4.26 mm2, compared with an error of 6.75 mm2 produced when using the mean shape as the prediction. We also indicate how the correlation strengths between structures can be used to inform a hierarchical scheme in which partial least squares regression is combined with a model fitting algorithm to further improve prediction accuracy.
在本文中,我们描述了如何使用两种多元统计技术来研究大脑内不同结构之间如何相对于彼此进行统计变化。其中第一种技术是典型相关分析,它提取并量化两组向量变量之间的相关行为。第二种技术是偏最小二乘回归,它确定第一组向量变量中的最佳因子,用于从第二组预测一个向量变量。我们将这些技术应用于178组大脑的3D磁共振图像,以量化和预测18个皮质下结构之间的相关行为。对这些结构进行成对典型相关分析得到的相关系数在0.51至0.67之间,相邻结构具有最强的相关性。使用偏最小二乘回归对这些结构进行成对预测产生的总体均方误差为4.26平方毫米,而使用平均形状作为预测时产生的误差为6.75平方毫米。我们还指出了结构之间的相关强度如何用于指导一种分层方案,其中偏最小二乘回归与模型拟合算法相结合以进一步提高预测准确性。