School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
Antimicrob Agents Chemother. 2013 Jan;57(1):168-76. doi: 10.1128/AAC.01039-12. Epub 2012 Oct 22.
The subunit ε of bacterial F(1)F(O) ATP synthases plays an important regulatory role in coupling and catalysis via conformational transitions of its C-terminal domain. Here we present the first low-resolution solution structure of ε of Mycobacterium tuberculosis (Mtε) F(1)F(O) ATP synthase and the nuclear magnetic resonance (NMR) structure of its C-terminal segment (Mtε(103-120)). Mtε is significantly shorter (61.6 Å) than forms of the subunit in other bacteria, reflecting a shorter C-terminal sequence, proposed to be important in coupling processes via the catalytic β subunit. The C-terminal segment displays an α-helical structure and a highly positive surface charge due to the presence of arginine residues. Using NMR spectroscopy, fluorescence spectroscopy, and mutagenesis, we demonstrate that the new tuberculosis (TB) drug candidate TMC207, proposed to bind to the proton translocating c-ring, also binds to Mtε. A model for the interaction of TMC207 with both ε and the c-ring is presented, suggesting that TMC207 forms a wedge between the two rotating subunits by interacting with the residues W15 and F50 of ε and the c-ring, respectively. T19 and R37 of ε provide the necessary polar interactions with the drug molecule. This new model of the mechanism of TMC207 provides the basis for the design of new drugs targeting the F(1)F(O) ATP synthase in M. tuberculosis.
细菌 F(1)F(O) ATP 合酶的亚基 ε 通过其 C 末端结构域的构象转变在偶联和催化中发挥重要的调节作用。在这里,我们呈现了第一个结核分枝杆菌 (Mt) F(1)F(O) ATP 合酶的 ε 的低分辨率溶液结构和其 C 末端片段 (Mtε(103-120)) 的核磁共振 (NMR) 结构。Mtε 明显更短 (61.6 Å) 于其他细菌中的亚基形式,反映了较短的 C 末端序列,被认为在通过催化β亚基的偶联过程中很重要。C 末端片段显示出α螺旋结构和高度正的表面电荷,这是由于精氨酸残基的存在。通过 NMR 光谱、荧光光谱和突变分析,我们证明了新的结核病 (TB) 药物候选物 TMC207,据推测与质子转移 c 环结合,也与 Mtε 结合。提出了 TMC207 与 ε 和 c 环相互作用的模型,表明 TMC207 通过与 ε 的残基 W15 和 F50 以及 c 环相互作用,在两个旋转亚基之间形成一个楔形。ε 的 T19 和 R37 与药物分子提供了必要的极性相互作用。TMC207 作用机制的这个新模型为设计针对结核分枝杆菌 F(1)F(O) ATP 合酶的新型药物提供了基础。