Krah Alexander, Vogelaar Timothy, de Jong Sam I, Claridge Jolyon K, Bond Peter J, McMillan Duncan G G
Korea Institute for Advanced Study, School of Computational Sciences, Seoul, South Korea.
Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.
Front Mol Biosci. 2023 Feb 27;10:1059673. doi: 10.3389/fmolb.2023.1059673. eCollection 2023.
It is a conjecture that the ε subunit regulates ATP hydrolytic function of the FF ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, preventing ATP hydrolysis. The ε subunit takes a contracted conformation when bound to ATP, thus would not interfere with catalysis. A recent crystallographic study has disputed this; the TA2.A1 FF ATP synthase cannot natively hydrolyse ATP, yet studies have demonstrated that the loss of the ε subunit terminal helix results in an ATP synthase capable of ATP hydrolysis, supporting ε subunit function. Analysis of sequence and crystallographic data of the FF ATP synthase revealed two unique histidine residues. Molecular dynamics simulations suggested that the protonation state of these residues may influence ATP binding site stability. Yet these residues lie outside the ATP/Mg binding site of the ε subunit. We then probed the effect of pH on the ATP binding affinity of the ε subunit from the FF ATP synthase at various physiologically relevant pH values. We show that binding affinity changes 5.9 fold between pH 7.0, where binding is weakest, to pH 8.5 where it is strongest. Since the cytoplasm is pH 8.0 when it grows optimally, this correlates to the ε subunit being down due to ATP/Mg affinity, and not being involved in blocking ATP hydrolysis. Here, we have experimentally correlated that the pH of the bacterial cytoplasm is of critical importance for ε subunit ATP affinity regulated by second-shell residues thus the function of the ε subunit changes with growth conditions.
有一种推测认为,ε亚基调节细菌中F₀F₁ATP合酶的ATP水解功能。这一推测是基于ε亚基呈伸展构象,其末端螺旋深入六聚体催化结构域的中心结构,从而阻止ATP水解。当ε亚基与ATP结合时,它会呈收缩构象,因此不会干扰催化作用。最近的一项晶体学研究对此提出了质疑;TA2.A1 F₀F₁ATP合酶本身不能水解ATP,但研究表明,ε亚基末端螺旋的缺失会导致ATP合酶能够进行ATP水解,这支持了ε亚基的功能。对F₀F₁ATP合酶的序列和晶体学数据进行分析后发现了两个独特的组氨酸残基。分子动力学模拟表明,这些残基的质子化状态可能会影响ATP结合位点的稳定性。然而,这些残基位于ε亚基的ATP/Mg结合位点之外。然后,我们在各种生理相关的pH值下,探究了pH对F₀F₁ATP合酶中ε亚基ATP结合亲和力的影响。我们发现,在pH 7.0(结合最弱)到pH 8.5(结合最强)之间,结合亲和力变化了5.9倍。由于细菌在最佳生长时细胞质的pH为8.0,这与ε亚基因ATP/Mg亲和力而失活相关,且不参与阻止ATP水解。在这里,我们通过实验证明,细菌细胞质的pH对于由第二壳层残基调节的ε亚基ATP亲和力至关重要,因此ε亚基的功能会随生长条件而变化。
Proc Natl Acad Sci U S A. 2016-9-27
Biochim Biophys Acta Gen Subj. 2021-1
Biochim Biophys Acta Bioenerg. 2018-6-8
Front Microbiol. 2022-8-23
Biochim Biophys Acta Bioenerg. 2021-3-1
Front Microbiol. 2024-10-28
Sci Adv. 2022-2-18
Proc Natl Acad Sci U S A. 2020-11-24
Biochim Biophys Acta Gen Subj. 2021-1
Antimicrob Agents Chemother. 2020-11-17
Chembiochem. 2020-11-16