文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FF型ATP合酶ε亚基与ATP的结合依赖于pH,这表明细菌中ε亚基的功能调节具有多样性。

ATP binding by an FF ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria.

作者信息

Krah Alexander, Vogelaar Timothy, de Jong Sam I, Claridge Jolyon K, Bond Peter J, McMillan Duncan G G

机构信息

Korea Institute for Advanced Study, School of Computational Sciences, Seoul, South Korea.

Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.

出版信息

Front Mol Biosci. 2023 Feb 27;10:1059673. doi: 10.3389/fmolb.2023.1059673. eCollection 2023.


DOI:10.3389/fmolb.2023.1059673
PMID:36923639
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10010621/
Abstract

It is a conjecture that the ε subunit regulates ATP hydrolytic function of the FF ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, preventing ATP hydrolysis. The ε subunit takes a contracted conformation when bound to ATP, thus would not interfere with catalysis. A recent crystallographic study has disputed this; the TA2.A1 FF ATP synthase cannot natively hydrolyse ATP, yet studies have demonstrated that the loss of the ε subunit terminal helix results in an ATP synthase capable of ATP hydrolysis, supporting ε subunit function. Analysis of sequence and crystallographic data of the FF ATP synthase revealed two unique histidine residues. Molecular dynamics simulations suggested that the protonation state of these residues may influence ATP binding site stability. Yet these residues lie outside the ATP/Mg binding site of the ε subunit. We then probed the effect of pH on the ATP binding affinity of the ε subunit from the FF ATP synthase at various physiologically relevant pH values. We show that binding affinity changes 5.9 fold between pH 7.0, where binding is weakest, to pH 8.5 where it is strongest. Since the cytoplasm is pH 8.0 when it grows optimally, this correlates to the ε subunit being down due to ATP/Mg affinity, and not being involved in blocking ATP hydrolysis. Here, we have experimentally correlated that the pH of the bacterial cytoplasm is of critical importance for ε subunit ATP affinity regulated by second-shell residues thus the function of the ε subunit changes with growth conditions.

摘要

有一种推测认为,ε亚基调节细菌中F₀F₁ATP合酶的ATP水解功能。这一推测是基于ε亚基呈伸展构象,其末端螺旋深入六聚体催化结构域的中心结构,从而阻止ATP水解。当ε亚基与ATP结合时,它会呈收缩构象,因此不会干扰催化作用。最近的一项晶体学研究对此提出了质疑;TA2.A1 F₀F₁ATP合酶本身不能水解ATP,但研究表明,ε亚基末端螺旋的缺失会导致ATP合酶能够进行ATP水解,这支持了ε亚基的功能。对F₀F₁ATP合酶的序列和晶体学数据进行分析后发现了两个独特的组氨酸残基。分子动力学模拟表明,这些残基的质子化状态可能会影响ATP结合位点的稳定性。然而,这些残基位于ε亚基的ATP/Mg结合位点之外。然后,我们在各种生理相关的pH值下,探究了pH对F₀F₁ATP合酶中ε亚基ATP结合亲和力的影响。我们发现,在pH 7.0(结合最弱)到pH 8.5(结合最强)之间,结合亲和力变化了5.9倍。由于细菌在最佳生长时细胞质的pH为8.0,这与ε亚基因ATP/Mg亲和力而失活相关,且不参与阻止ATP水解。在这里,我们通过实验证明,细菌细胞质的pH对于由第二壳层残基调节的ε亚基ATP亲和力至关重要,因此ε亚基的功能会随生长条件而变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/496d2c589afa/fmolb-10-1059673-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/98118b32af73/fmolb-10-1059673-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/5987b1c80d70/fmolb-10-1059673-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/5b642397a042/fmolb-10-1059673-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/e8a7981a20b1/fmolb-10-1059673-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/496d2c589afa/fmolb-10-1059673-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/98118b32af73/fmolb-10-1059673-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/5987b1c80d70/fmolb-10-1059673-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/5b642397a042/fmolb-10-1059673-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/e8a7981a20b1/fmolb-10-1059673-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/10010621/496d2c589afa/fmolb-10-1059673-g005.jpg

相似文献

[1]
ATP binding by an FF ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria.

Front Mol Biosci. 2023-2-27

[2]
Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.

J Bacteriol. 2006-6

[3]
Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.

Proc Natl Acad Sci U S A. 2016-9-27

[4]
Insights into the regulatory function of the subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data.

Open Biol. 2018-5

[5]
A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP.

Biochim Biophys Acta Gen Subj. 2021-1

[6]
Control of rotation of the FF-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF proteins.

J Bioenerg Biomembr. 2018-9-28

[7]
Unidirectional regulation of the FF-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria.

Biochim Biophys Acta Bioenerg. 2018-6-8

[8]
Structure and subunit arrangement of Mycobacterial FF ATP synthase and novel features of the unique mycobacterial subunit δ.

J Struct Biol. 2019-5-24

[9]
FF ATP synthase molecular motor mechanisms.

Front Microbiol. 2022-8-23

[10]
Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans.

Biochim Biophys Acta Bioenerg. 2021-3-1

引用本文的文献

[1]
Quantitative proteomics reveals oxygen-induced adaptations in TA2.A1 microaerobic chemostat cultures.

Front Microbiol. 2024-10-28

[2]
Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by FF-ATP Synthase.

Molecules. 2023-11-8

[3]
Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F-ATPase.

Biomolecules. 2023-10-30

[4]
Inhibitory to non-inhibitory evolution of the subunit of the FF-ATPase of and -proteobacteria as related to mitochondrial endosymbiosis.

Front Mol Biosci. 2023-8-17

本文引用的文献

[1]
Structural Elements Involved in ATP Hydrolysis Inhibition and ATP Synthesis of Tuberculosis and Nontuberculous Mycobacterial F-ATP Synthase Decipher New Targets for Inhibitors.

Antimicrob Agents Chemother. 2022-12-20

[2]
F-F coupling and symmetry mismatch in ATP synthase resolved in every F rotation step.

Biophys J. 2023-7-25

[3]
Atomic solution structure of Mycobacterium abscessus F-ATP synthase subunit ε and identification of Ep1MabF1 as a targeted inhibitor.

FEBS J. 2022-10

[4]
Structure of ATP synthase from ESKAPE pathogen .

Sci Adv. 2022-2-18

[5]
Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline.

Nature. 2021-1

[6]
The 3 × 120° rotary mechanism of F-ATPase is different from that of the bacterial and mitochondrial F-ATPases.

Proc Natl Acad Sci U S A. 2020-11-24

[7]
A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP.

Biochim Biophys Acta Gen Subj. 2021-1

[8]
Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life.

Extremophiles. 2020-10-8

[9]
The Unique C-Terminal Extension of Mycobacterial F-ATP Synthase Subunit α Is the Major Contributor to Its Latent ATP Hydrolysis Activity.

Antimicrob Agents Chemother. 2020-11-17

[10]
The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit.

Chembiochem. 2020-11-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索