Suppr超能文献

利用网络信息平滑基因表达数据可提高调控基因的一致性。

Smoothing gene expression data with network information improves consistency of regulated genes.

作者信息

Dørum Guro, Snipen Lars, Solheim Margrete, Saebo Solve

机构信息

Norwegian University of Life Sciences.

出版信息

Stat Appl Genet Mol Biol. 2011 Aug 9;10(1):/j/sagmb.2011.10.issue-1/sagmb.2011.10.1.1618/sagmb.2011.10.1.1618.xml. doi: 10.2202/1544-6115.1618.

Abstract

Gene set analysis methods have become a widely used tool for including prior biological knowledge in the statistical analysis of gene expression data. Advantages of these methods include increased sensitivity, easier interpretation and more conformity in the results. However, gene set methods do not employ all the available information about gene relations. Genes are arranged in complex networks where the network distances contain detailed information about inter-gene dependencies. We propose a method that uses gene networks to smooth gene expression data with the aim of reducing the number of false positives and identify important subnetworks. Gene dependencies are extracted from the network topology and are used to smooth genewise test statistics. To find the optimal degree of smoothing, we propose using a criterion that considers the correlation between the network and the data. The network smoothing is shown to improve the ability to identify important genes in simulated data. Applied to a real data set, the smoothing accentuates parts of the network with a high density of differentially expressed genes.

摘要

基因集分析方法已成为一种广泛使用的工具,用于在基因表达数据的统计分析中纳入先验生物学知识。这些方法的优点包括提高敏感性、更易于解释以及结果更具一致性。然而,基因集方法并未利用关于基因关系的所有可用信息。基因排列在复杂的网络中,其中网络距离包含有关基因间依赖性的详细信息。我们提出一种使用基因网络来平滑基因表达数据的方法,目的是减少假阳性数量并识别重要的子网。从网络拓扑中提取基因依赖性,并用于平滑基因层面的检验统计量。为了找到最佳平滑程度,我们建议使用一种考虑网络与数据之间相关性的标准。网络平滑显示出可提高在模拟数据中识别重要基因的能力。应用于真实数据集时,平滑突出了具有高密度差异表达基因的网络部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验