Suppr超能文献

细菌和线粒体转运RNA中摆动尿苷的修饰,这些转运RNA识别双密码子框中的NNA/NNG三联体。

Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes.

作者信息

Armengod M Eugenia, Meseguer Salvador, Villarroya Magda, Prado Silvia, Moukadiri Ismaïl, Ruiz-Partida Rafael, Garzón M José, Navarro-González Carmen, Martínez-Zamora Ana

机构信息

a Laboratory of RNA Modification and Mitochondrial Diseases ; Centro de Investigación Príncipe Felipe ; Valencia , Spain.

出版信息

RNA Biol. 2014;11(12):1495-507. doi: 10.4161/15476286.2014.992269.

Abstract

Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.

摘要

转运RNA(tRNA)摆动位置(U34)处尿苷的转录后修饰对于优化翻译至关重要。线粒体tRNA的U34修饰缺陷与一组罕见疾病相关,这些疾病的共同特征是氧化磷酸化系统受损。从线粒体到细胞核的逆行信号通路参与了这些疾病的病理生理过程。这些通路不仅可能由tRNA低修饰引起的线粒体(mt)翻译紊乱触发,也可能是mt-tRNA和mt-tRNA修饰酶的非常规作用导致的。这些酶在进化上的保守性支持了它们对细胞和机体功能的重要性。有趣的是,细菌和真核细胞通过改变这些tRNA修饰酶的表达或活性来应对压力,这会导致tRNA修饰状态的变化。本综述总结了关于这些酶的最新发现,并将其置于先前的数据背景中。

相似文献

2
Enzymology of tRNA modification in the bacterial MnmEG pathway.
Biochimie. 2012 Jul;94(7):1510-20. doi: 10.1016/j.biochi.2012.02.019. Epub 2012 Feb 28.
5
Bacillus subtilis exhibits MnmC-like tRNA modification activities.
RNA Biol. 2018;15(9):1167-1173. doi: 10.1080/15476286.2018.1517012. Epub 2018 Sep 24.
9
Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli.
Nucleic Acids Res. 2006;34(20):5892-905. doi: 10.1093/nar/gkl752. Epub 2006 Oct 24.

引用本文的文献

2
tRNA modifying enzymes MnmE and MnmG are essential for apicoplast maintenance.
bioRxiv. 2025 Jan 6:2024.12.21.629855. doi: 10.1101/2024.12.21.629855.
3
2-Thiouridine formation in : a critical review.
J Bacteriol. 2025 Jan 31;207(1):e0042024. doi: 10.1128/jb.00420-24. Epub 2024 Dec 11.
5
tRNA modification reprogramming contributes to artemisinin resistance in Plasmodium falciparum.
Nat Microbiol. 2024 Jun;9(6):1483-1498. doi: 10.1038/s41564-024-01664-3. Epub 2024 Apr 17.
6
Alternate routes to mnmsU synthesis in Gram-positive bacteria.
J Bacteriol. 2024 Apr 18;206(4):e0045223. doi: 10.1128/jb.00452-23. Epub 2024 Mar 29.
8
Structural basis for the selective methylation of 5-carboxymethoxyuridine in tRNA modification.
Nucleic Acids Res. 2023 Sep 22;51(17):9432-9441. doi: 10.1093/nar/gkad668.
10
The first apicoplast tRNA thiouridylase plays a vital role in the growth of .
Front Cell Infect Microbiol. 2022 Aug 15;12:947039. doi: 10.3389/fcimb.2022.947039. eCollection 2022.

本文引用的文献

1
Transfer RNA Modification.
EcoSal Plus. 2005 Nov;1(2). doi: 10.1128/ecosalplus.4.6.2.
3
Transfer RNA and human disease.
Front Genet. 2014 Jun 3;5:158. doi: 10.3389/fgene.2014.00158. eCollection 2014.
4
A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs.
Nucleic Acids Res. 2014 Jun;42(11):7346-57. doi: 10.1093/nar/gku390. Epub 2014 May 15.
5
Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism.
F1000Prime Rep. 2014 Apr 1;6:19. doi: 10.12703/P6-19. eCollection 2014.
6
Biosynthesis and functions of sulfur modifications in tRNA.
Front Genet. 2014 Apr 2;5:67. doi: 10.3389/fgene.2014.00067. eCollection 2014.
7
SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization.
Nucleic Acids Res. 2014 May;42(9):5978-92. doi: 10.1093/nar/gku213. Epub 2014 Mar 14.
8
Role of tRNA modifications in human diseases.
Trends Mol Med. 2014 Jun;20(6):306-14. doi: 10.1016/j.molmed.2014.01.008. Epub 2014 Feb 25.
9
Mixing and matching mitochondrial aminoacyl synthetases and their tRNAs: a new way to treat respiratory chain disorders?
EMBO Mol Med. 2014 Feb;6(2):155-7. doi: 10.1002/emmm.201303586. Epub 2014 Jan 28.
10
Mitochondria: impaired mitochondrial translation in human disease.
Int J Biochem Cell Biol. 2014 Mar;48(100):77-84. doi: 10.1016/j.biocel.2013.12.011. Epub 2014 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验