Department of Statistics, University of Oxford, Oxford OX1 3TG, UK.
Bioinformatics. 2013 Jan 1;29(1):84-91. doi: 10.1093/bioinformatics/bts632. Epub 2012 Oct 23.
Given the current costs of next-generation sequencing, large studies carry out low-coverage sequencing followed by application of methods that leverage linkage disequilibrium to infer genotypes. We propose a novel method that assumes study samples are sequenced at low coverage and genotyped on a genome-wide microarray, as in the 1000 Genomes Project (1KGP). We assume polymorphic sites have been detected from the sequencing data and that genotype likelihoods are available at these sites. We also assume that the microarray genotypes have been phased to construct a haplotype scaffold. We then phase each polymorphic site using an MCMC algorithm that iteratively updates the unobserved alleles based on the genotype likelihoods at that site and local haplotype information. We use a multivariate normal model to capture both allele frequency and linkage disequilibrium information around each site. When sequencing data are available from trios, Mendelian transmission constraints are easily accommodated into the updates. The method is highly parallelizable, as it analyses one position at a time.
We illustrate the performance of the method compared with other methods using data from Phase 1 of the 1KGP in terms of genotype accuracy, phasing accuracy and downstream imputation performance. We show that the haplotype panel we infer in African samples, which was based on a trio-phased scaffold, increases downstream imputation accuracy for rare variants (R2 increases by >0.05 for minor allele frequency <1%), and this will translate into a boost in power to detect associations. These results highlight the value of incorporating microarray genotypes when calling variants from next-generation sequence data.
The method (called MVNcall) is implemented in a C++ program and is available from http://www.stats.ox.ac.uk/∼marchini/#software.
鉴于下一代测序的当前成本,大型研究进行低覆盖率测序,然后应用利用连锁不平衡推断基因型的方法。我们提出了一种新方法,假设研究样本以低覆盖率进行测序,并在全基因组微阵列上进行基因分型,如在 1000 基因组计划(1KGP)中。我们假设从测序数据中检测到多态性位点,并且在这些位点处存在基因型可能性。我们还假设微阵列基因型已经被相位化以构建单倍型支架。然后,我们使用 MCMC 算法对每个多态性位点进行相位化,该算法基于该位点和局部单倍型信息迭代更新未观察到的等位基因的基因型可能性。我们使用多元正态模型来捕获每个位点周围的等位基因频率和连锁不平衡信息。当来自三亲的测序数据可用时,孟德尔传递约束很容易适应更新。该方法高度并行化,因为它一次分析一个位置。
我们使用 Phase 1 的 1KGP 中的数据来说明该方法与其他方法相比的性能,根据基因型准确性、相位准确性和下游插补性能。我们表明,我们在非洲样本中推断的单倍型面板,基于三亲相位化支架,增加了罕见变体的下游插补准确性(对于次要等位基因频率<1%的变体,R2 增加了>0.05),这将转化为检测关联的能力提高。这些结果强调了在调用来自下一代序列数据的变体时纳入微阵列基因型的价值。
该方法(称为 MVNcall)是用 C++程序实现的,可从 http://www.stats.ox.ac.uk/∼marchini/#software 获得。