Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, South Korea.
Eur J Nucl Med Mol Imaging. 2013 Jan;40(2):198-206. doi: 10.1007/s00259-012-2266-x. Epub 2012 Oct 25.
Vascular endothelial growth factor receptors (VEGFRs) are associated with tumor growth and induction of tumor angiogenesis and are known to be overexpressed in various human tumors. In the present study, we prepared and evaluated (68)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-benzyl (NOTA)-VEGF(121) as a positron emission tomography (PET) radioligand for the in vivo imaging of VEGFR expression.
(68)Ga-NOTA-VEGF(121) was prepared by conjugation of VEGF(121) and p-SCN-NOTA, followed by radiolabeling with (68)GaCl(3) and then purification using a PD-10 column. Human aortic endothelial cell (HAEC) binding of (68)Ga-NOTA-VEGF(121) was measured as a function of time. MicroPET and biodistribution studies of U87MG tumor xenografted mice were performed at 1, 2, and 4 h after injection of (68)Ga-NOTA-VEGF(121). The tumor tissues were then sectioned and subjected to immunostaining.
The decay-corrected radiochemical yield of (68)Ga-NOTA-VEGF(121) was 40 ± 4.5 % and specific activity was 243.1 ± 104.6 GBq/μmol (8.6 ± 3.7 GBq/mg). (68)Ga-NOTA-VEGF(121) was avidly taken up by HAECs in a time-dependent manner, and the uptake was blocked either by 32 % with VEGF(121) or by 49 % with VEGFR2 antibody at 4 h post-incubation. In microPET images of U87MG tumor xenografted mice, radioactivity was accumulated in tumors (2.73±0.32 %ID/g at 2 h), and the uptake was blocked by 40 % in the presence of VEGF(121). In biodistribution studies, tumor uptake (1.84±0.14 %ID/g at 2 h) was blocked with VEGF(121) at a similar level (52 %) to that of microPET images. Immunostaining analysis of U87MG tumor tissues obtained after the microPET imaging showed high levels of VEGFR2 expression.
These results demonstrate that (68)Ga-NOTA-VEGF(121) has potential for the in vivo imaging of VEGFR expression. In addition, our results also suggest that the in vivo characteristics of radiolabeled VEGF depend on the properties of the radioisotope and the chelator used.
血管内皮生长因子受体(VEGFRs)与肿瘤生长和诱导肿瘤血管生成有关,并且已知在各种人类肿瘤中过度表达。在本研究中,我们制备并评估了(68)Ga-1,4,7-三氮杂环壬烷-1,4,7-三乙酸-苄基(NOTA)-VEGF(121)作为正电子发射断层扫描(PET)示踪剂,用于VEGFR 表达的体内成像。
(68)Ga-NOTA-VEGF(121)通过 VEGF(121)与 p-SCN-NOTA 的缀合,然后用(68)GaCl(3)标记,再用 PD-10 柱纯化来制备。(68)Ga-NOTA-VEGF(121)与人类主动脉内皮细胞(HAEC)的结合作为时间的函数进行测量。在注射(68)Ga-NOTA-VEGF(121)后 1、2 和 4 小时,对 U87MG 肿瘤异种移植小鼠进行 MicroPET 和生物分布研究。然后将肿瘤组织切片并进行免疫染色。
(68)Ga-NOTA-VEGF(121)的放射性化学产率经衰减校正后为 40±4.5%,比活度为 243.1±104.6GBq/μmol(8.6±3.7GBq/mg)。(68)Ga-NOTA-VEGF(121)在 HAEC 中呈时间依赖性摄取,孵育 4 小时后,用 VEGF(121)阻断 32%,用 VEGFR2 抗体阻断 49%。在 U87MG 肿瘤异种移植小鼠的 MicroPET 图像中,放射性物质在肿瘤中积累(2 小时时为 2.73±0.32%ID/g),在存在 VEGF(121)时阻断 40%。在生物分布研究中,用 VEGF(121)阻断肿瘤摄取(2 小时时为 1.84±0.14%ID/g),与 MicroPET 图像的阻断水平(52%)相似。MicroPET 成像后获得的 U87MG 肿瘤组织的免疫染色分析显示 VEGFR2 表达水平较高。
这些结果表明,(68)Ga-NOTA-VEGF(121)具有用于 VEGFR 表达体内成像的潜力。此外,我们的结果还表明,放射性标记 VEGF 的体内特性取决于所用放射性同位素和螯合剂的特性。