Suppr超能文献

骨骼肌中脂肪组织的自动无监督多参数分类。

Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.

出版信息

J Magn Reson Imaging. 2013 Apr;37(4):917-27. doi: 10.1002/jmri.23884. Epub 2012 Oct 23.

Abstract

PURPOSE

To introduce and validate an automated unsupervised multi-parametric method for segmentation of the subcutaneous fat and muscle regions to determine subcutaneous adipose tissue (SAT) and intermuscular adipose tissue (IMAT) areas based on data from a quantitative chemical shift-based water-fat separation approach.

MATERIALS AND METHODS

Unsupervised standard k-means clustering was used to define sets of similar features (k = 2) within the whole multi-modal image after the water-fat separation. The automated image processing chain was composed of three primary stages: tissue, muscle, and bone region segmentation. The algorithm was applied on calf and thigh datasets to compute SAT and IMAT areas and was compared with a manual segmentation.

RESULTS

The IMAT area using the automatic segmentation had excellent agreement with the IMAT area using the manual segmentation for all the cases in the thigh (R(2): 0.96) and for cases with up to moderate IMAT area in the calf (R(2): 0.92). The group with the highest grade of muscle fat infiltration in the calf had the highest error in the inner SAT contour calculation.

CONCLUSION

The proposed multi-parametric segmentation approach combined with quantitative water-fat imaging provides an accurate and reliable method for an automated calculation of the SAT and IMAT areas reducing considerably the total postprocessing time.

摘要

目的

介绍并验证一种自动化的、无监督的多参数方法,用于分割皮下脂肪和肌肉区域,以根据定量化学位移水脂分离方法的数据确定皮下脂肪组织 (SAT) 和肌间脂肪组织 (IMAT) 区域。

材料与方法

在水脂分离后,使用无监督标准 k-均值聚类在全多模态图像中定义相似特征集 (k = 2)。自动图像处理链由三个主要阶段组成:组织、肌肉和骨骼区域分割。该算法应用于小腿和大腿数据集,以计算 SAT 和 IMAT 区域,并与手动分割进行比较。

结果

对于大腿的所有病例(R²:0.96)和小腿中 IMAT 区域适度的病例(R²:0.92),使用自动分割的 IMAT 区域与使用手动分割的 IMAT 区域具有极好的一致性。在小腿中肌肉脂肪浸润程度最高的组中,内部 SAT 轮廓计算的误差最高。

结论

结合定量水脂成像的提出的多参数分割方法提供了一种准确可靠的方法,可自动计算 SAT 和 IMAT 区域,大大减少了总后处理时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/962a/3573225/d97b3d3ea593/nihms408585f1.jpg

相似文献

引用本文的文献

4
...(你提供的原文为空,所以译文也没有具体内容哦,请补充原文以便准确翻译。)
J Orthop Translat. 2023 Aug 19;42:57-72. doi: 10.1016/j.jot.2023.07.005. eCollection 2023 Sep.
9
10
Overview of MR Image Segmentation Strategies in Neuromuscular Disorders.神经肌肉疾病的磁共振图像分割策略概述
Front Neurol. 2021 Mar 25;12:625308. doi: 10.3389/fneur.2021.625308. eCollection 2021.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验