Tam Kenneth, Liu Si Wen, Costa Sarah, Szabo Eva, Reitsma Shannon, Gillick Hana, Adachi Jonathan D, Wong Andy Kin On
Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA.
Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
Skelet Muscle. 2024 Dec 27;14(1):37. doi: 10.1186/s13395-024-00365-z.
INTER- and INTRAmuscular fat (IMF) is elevated in high metabolic states and can promote inflammation. While magnetic resonance imaging (MRI) excels in depicting IMF, the lack of reproducible tools prevents the ability to measure change and track intervention success.
We detail an open-source fully-automated iterative threshold-seeking algorithm (ITSA) for segmenting IMF from T1-weighted MRI of the calf and thigh within three cohorts (CaMos Hamilton (N = 54), AMBERS (N = 280), OAI (N = 105)) selecting adults 45-85 years of age. Within the CaMos Hamilton cohort, same-day and 1-year repeated images (N = 38) were used to evaluate short- and long-term precision error with root mean square coefficients of variation; and to validate against semi-automated segmentation methods using linear regression. The effect of algorithmic improvements to fat ascertainment using 3D connectivity and partial volume correction rules on analytical precision was investigated. Robustness and versatility of the algorithm was demonstrated by application to different MR sequences/magnetic strength and to calf versus thigh scans.
Among 439 adults (319 female(89%), age: 71.6 ± 7.6 yrs, BMI: 28.06 ± 4.87 kg/m, IMF%: 10.91 ± 4.57%), fully-automated ITSA performed well across MR sequences and anatomies from three cohorts. Applying both 3D connectivity and partial volume fat correction improved precision from 4.99% to 2.21% test-retest error. Validation against semi-automated methods showed R from 0.92 to 0.98 with fully-automated ITSA routinely yielding more conservative computations of IMF volumes. Quality control shows 7% of cases requiring manual correction, primarily due to IMF merging with subcutaneous fat. A full workflow described methods to export tags for manual correction.
The greatest challenge in segmenting IMF from MRI is in selecting a dynamic threshold that consistently performs across repeated imaging. Fully-automated ITSA achieved this, demonstrated low short- and long-term precision error, conducive of use within RCTs.
在高代谢状态下,肌间和肌内脂肪(IMF)会升高,并可促进炎症反应。虽然磁共振成像(MRI)在描绘IMF方面表现出色,但缺乏可重复的工具阻碍了测量变化和追踪干预效果的能力。
我们详细介绍了一种开源的全自动迭代阈值搜索算法(ITSA),用于从三个队列(CaMos Hamilton(N = 54)、AMBERS(N = 280)、OAI(N = 105))中45 - 85岁成年人的小腿和大腿的T1加权MRI图像中分割IMF。在CaMos Hamilton队列中,使用同日和1年重复图像(N = 38),通过均方根变异系数评估短期和长期精度误差;并使用线性回归与半自动分割方法进行验证。研究了使用3D连通性和部分容积校正规则对脂肪确定进行算法改进对分析精度的影响。通过将该算法应用于不同的MR序列/磁场强度以及小腿与大腿扫描,证明了该算法的稳健性和通用性。
在439名成年人(319名女性(89%),年龄:71.6 ± 7.6岁,BMI:28.06 ± 4.87 kg/m²,IMF%:10.91 ± 4.57%)中,全自动ITSA在来自三个队列的MR序列和解剖结构中表现良好。应用3D连通性和部分容积脂肪校正后,重测误差精度从4.99%提高到2.21%。与半自动方法的验证显示,全自动ITSA的R值在0.92至0.98之间,通常会得出更保守的IMF体积计算结果。质量控制显示7%的病例需要人工校正,主要是因为IMF与皮下脂肪融合。完整的工作流程描述了导出标签进行人工校正的方法。
从MRI中分割IMF的最大挑战在于选择一个在重复成像中始终有效的动态阈值。全自动ITSA实现了这一点,显示出低短期和长期精度误差,有利于在随机对照试验中使用。