Suppr超能文献

厚升支数学模型中的转运效率和工作量分布。

Transport efficiency and workload distribution in a mathematical model of the thick ascending limb.

机构信息

Department of Mathematics, Duke University, Durham, NC, USA.

出版信息

Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F653-64. doi: 10.1152/ajprenal.00101.2012. Epub 2012 Oct 24.

Abstract

The thick ascending limb (TAL) is a major NaCl reabsorbing site in the nephron. Efficient reabsorption along that segment is thought to be a consequence of the establishment of a strong transepithelial potential that drives paracellular Na(+) uptake. We used a multicell mathematical model of the TAL to estimate the efficiency of Na(+) transport along the TAL and to examine factors that determine transport efficiency, given the condition that TAL outflow must be adequately dilute. The TAL model consists of a series of epithelial cell models that represent all major solutes and transport pathways. Model equations describe luminal flows, based on mass conservation and electroneutrality constraints. Empirical descriptions of cell volume regulation (CVR) and pH control were implemented, together with the tubuloglomerular feedback (TGF) system. Transport efficiency was calculated as the ratio of total net Na(+) transport (i.e., paracellular and transcellular transport) to transcellular Na(+) transport. Model predictions suggest that 1) the transepithelial Na(+) concentration gradient is a major determinant of transport efficiency; 2) CVR in individual cells influences the distribution of net Na(+) transport along the TAL; 3) CVR responses in conjunction with TGF maintain luminal Na(+) concentration well above static head levels in the cortical TAL, thereby preventing large decreases in transport efficiency; and 4) under the condition that the distribution of Na(+) transport along the TAL is quasi-uniform, the tubular fluid axial Cl(-) concentration gradient near the macula densa is sufficiently steep to yield a TGF gain consistent with experimental data.

摘要

升支粗段(TAL)是肾脏中主要的 NaCl 重吸收部位。人们认为,该段高效的重吸收是建立强大的跨上皮电位的结果,该电位驱动细胞旁 Na+摄取。我们使用 TAL 的多细胞数学模型来估计 TAL 中 Na+转运的效率,并研究在 TAL 流出物必须充分稀释的条件下,决定转运效率的因素。TAL 模型由一系列代表所有主要溶质和转运途径的上皮细胞模型组成。模型方程基于质量守恒和电中性约束来描述腔内流动。实现了细胞体积调节(CVR)和 pH 控制的经验描述,以及管球反馈(TGF)系统。转运效率被计算为总净 Na+转运(即细胞旁和细胞内转运)与细胞内 Na+转运的比值。模型预测表明:1)跨上皮 Na+浓度梯度是转运效率的主要决定因素;2)单个细胞中的 CVR 会影响 TAL 中净 Na+转运的分布;3)CVR 响应与 TGF 一起维持皮质 TAL 中管腔 Na+浓度远高于静态水头水平,从而防止转运效率大幅下降;4)在 TAL 中 Na+转运分布几乎均匀的条件下,近致密斑的管状液轴向 Cl-浓度梯度足够陡峭,可产生与实验数据一致的 TGF 增益。

相似文献

1
Transport efficiency and workload distribution in a mathematical model of the thick ascending limb.
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F653-64. doi: 10.1152/ajprenal.00101.2012. Epub 2012 Oct 24.
2
Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell.
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F634-52. doi: 10.1152/ajprenal.00100.2012. Epub 2012 Oct 24.
4
Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study.
Am J Physiol Renal Physiol. 2014 Jul 15;307(2):F137-46. doi: 10.1152/ajprenal.00158.2014. Epub 2014 May 21.
5
Tubuloglomerular feedback signal transduction in a short loop of henle.
Bull Math Biol. 2010 Jan;72(1):34-62. doi: 10.1007/s11538-009-9436-4. Epub 2009 Aug 6.
6
Nonlinear filter properties of the thick ascending limb.
Am J Physiol. 1997 Oct;273(4):F625-34. doi: 10.1152/ajprenal.1997.273.4.F625.
7
Corticomedullary difference in the effects of dietary Ca²⁺ on tight junction properties in thick ascending limbs of Henle's loop.
Pflugers Arch. 2016 Feb;468(2):293-303. doi: 10.1007/s00424-015-1748-7. Epub 2015 Oct 26.
8
Evidence supporting a role for KCl cotransporter in the thick ascending limb of Henle's loop.
Kidney Int. 2001 Nov;60(5):1809-23. doi: 10.1046/j.1523-1755.2001.00994.x.
10
Effect of tubular inhomogeneities on feedback-mediated dynamics of a model of a thick ascending limb.
Math Med Biol. 2013 Sep;30(3):191-212. doi: 10.1093/imammb/dqs020. Epub 2012 Apr 17.

引用本文的文献

1
Claudins in Renal Physiology and Pathology.
Genes (Basel). 2020 Mar 10;11(3):290. doi: 10.3390/genes11030290.
2
Modeling glucose metabolism and lactate production in the kidney.
Math Biosci. 2017 Jul;289:116-129. doi: 10.1016/j.mbs.2017.04.008. Epub 2017 May 8.
3
Thermodynamic considerations in renal separation processes.
Theor Biol Med Model. 2017 Jan 26;14(1):2. doi: 10.1186/s12976-017-0048-7.
4
Modeling Glucose Metabolism in the Kidney.
Bull Math Biol. 2016 Jun;78(6):1318-36. doi: 10.1007/s11538-016-0188-7. Epub 2016 Jul 1.
5
Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat.
Math Med Biol. 2017 Sep 1;34(3):313-333. doi: 10.1093/imammb/dqw010.
6
Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
Am J Physiol Renal Physiol. 2016 Feb 1;310(3):F237-47. doi: 10.1152/ajprenal.00334.2015. Epub 2015 Oct 14.
7
Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F967-80. doi: 10.1152/ajprenal.00600.2014. Epub 2015 Jan 28.
8
Impact of renal medullary three-dimensional architecture on oxygen transport.
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F263-72. doi: 10.1152/ajprenal.00149.2014. Epub 2014 Jun 4.
9
Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study.
Am J Physiol Renal Physiol. 2014 Jul 15;307(2):F137-46. doi: 10.1152/ajprenal.00158.2014. Epub 2014 May 21.
10
Mathematical modeling of kidney transport.
Wiley Interdiscip Rev Syst Biol Med. 2013 Sep-Oct;5(5):557-73. doi: 10.1002/wsbm.1232. Epub 2013 Jul 12.

本文引用的文献

1
Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell.
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F634-52. doi: 10.1152/ajprenal.00100.2012. Epub 2012 Oct 24.
2
A mathematical model of rat ascending Henle limb. II. Epithelial function.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F525-42. doi: 10.1152/ajprenal.00231.2009. Epub 2009 Nov 18.
3
A mathematical model of rat ascending Henle limb. III. Tubular function.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F543-56. doi: 10.1152/ajprenal.00232.2009. Epub 2009 Nov 18.
4
The mammalian urine concentrating mechanism: hypotheses and uncertainties.
Physiology (Bethesda). 2009 Aug;24:250-6. doi: 10.1152/physiol.00013.2009.
5
Parameter estimation for mathematical models of NKCC2 cotransporter isoforms.
Am J Physiol Renal Physiol. 2009 Feb;296(2):F369-81. doi: 10.1152/ajprenal.00096.2008. Epub 2008 Nov 26.
7
Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality.
Kidney Int. 2006 Sep;70(5):865-71. doi: 10.1038/sj.ki.5001633. Epub 2006 Jul 5.
8
WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16777-82. doi: 10.1073/pnas.0508303102. Epub 2005 Nov 7.
9
WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia.
Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2064-9. doi: 10.1073/pnas.0308434100. Epub 2004 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验