Suppr超能文献

大鼠体外循环期间肾髓质和尿液氧张力

Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat.

作者信息

Sgouralis Ioannis, Evans Roger G, Layton Anita T

机构信息

National Institute for Mathematical and Biological Synthesis, NIMBioS, Knoxville, TN 37996, USA.

Cardiovascular Disease Program, Bioscience Discovery Institute and Department of Physiology, Monash University, Monash, Clayton, VIC 3800, Australia.

出版信息

Math Med Biol. 2017 Sep 1;34(3):313-333. doi: 10.1093/imammb/dqw010.

Abstract

Renal hypoxia could result from a mismatch in renal oxygen supply and demand, particularly in the renal medulla. Medullary hypoxic damage is believed to give rise to acute kidney injury, which is a prevalent complication of cardiac surgery performed on cardiopulmonary bypass (CPB). To determine the mechanisms that could lead to medullary hypoxia during CPB in the rat kidney, we developed a mathematical model which incorporates (i) autoregulation of renal blood flow and glomerular filtration rate, (ii) detailed oxygen transport and utilization in the renal medulla and (iii) oxygen transport along the ureter. Within the outer medulla, the lowest interstitial tissue P${\rm O2}$, which is an indicator of renal hypoxia, is predicted near the thick ascending limbs. Interstitial tissue P${\rm O2}$ exhibits a general decrease along the inner medullary axis, but urine P${\rm O2}$ increases significantly along the ureter. Thus, bladder urinary P${\rm O2}$ is predicted to be substantially higher than medullary P$_{\rm O2}$. The model is used to identify the phase of cardiac surgery performed on CPB that is associated with the highest risk for hypoxic kidney injury. Simulation results indicate that the outer medulla's vulnerability to hypoxic injury depends, in part, on the extent to which medullary blood flow is autoregulated. With imperfect medullary blood flow autoregulation, the model predicts that the rewarming phase of CPB, in which medullary blood flow is low but medullary oxygen consumption remains high, is the phase in which the kidney is most likely to suffer hypoxic injury.

摘要

肾缺氧可能源于肾脏氧供与需求的不匹配,尤其是在肾髓质。髓质缺氧性损伤被认为会引发急性肾损伤,这是体外循环(CPB)心脏手术中普遍存在的并发症。为了确定大鼠肾脏在CPB期间导致髓质缺氧的机制,我们开发了一个数学模型,该模型纳入了(i)肾血流和肾小球滤过率的自动调节,(ii)肾髓质中详细的氧运输和利用,以及(iii)沿输尿管的氧运输。在外髓质内,作为肾缺氧指标的最低间质组织氧分压预计出现在厚升支附近。间质组织氧分压沿髓质内轴总体呈下降趋势,但尿氧分压沿输尿管显著升高。因此,预计膀胱尿氧分压将显著高于髓质氧分压。该模型用于确定CPB心脏手术中与缺氧性肾损伤风险最高相关的阶段。模拟结果表明,外髓质对缺氧性损伤的易感性部分取决于髓质血流自动调节的程度。在髓质血流自动调节不完善的情况下,该模型预测CPB的复温阶段,即髓质血流低但髓质氧消耗仍然很高的阶段,是肾脏最容易遭受缺氧性损伤的阶段。

相似文献

1
Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat.
Math Med Biol. 2017 Sep 1;34(3):313-333. doi: 10.1093/imammb/dqw010.
2
Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
Perfusion. 2013 Nov;28(6):504-11. doi: 10.1177/0267659113490219. Epub 2013 May 29.
4
Impact of renal medullary three-dimensional architecture on oxygen transport.
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F263-72. doi: 10.1152/ajprenal.00149.2014. Epub 2014 Jun 4.
5
Renal hemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep under total intravenous anesthesia.
Am J Physiol Regul Integr Comp Physiol. 2020 Feb 1;318(2):R206-R213. doi: 10.1152/ajpregu.00290.2019. Epub 2019 Dec 11.
7
Analysis of the critical determinants of renal medullary oxygenation.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1483-F1502. doi: 10.1152/ajprenal.00315.2019. Epub 2019 Sep 4.
8
Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F967-80. doi: 10.1152/ajprenal.00600.2014. Epub 2015 Jan 28.

引用本文的文献

1
Early prediction matters: renal biomarkers in coronary artery bypass grafting.
J Bras Nefrol. 2025 Jul-Sep;47(3):e2025E011. doi: 10.1590/2175-8239-JBN-2025-E011en.
2
Sex and circadian regulation of metabolic demands in the rat kidney: A modeling analysis.
PLoS One. 2024 Jul 17;19(7):e0293419. doi: 10.1371/journal.pone.0293419. eCollection 2024.
3
Intraoperative and Postoperative Hemodynamic Predictors of Acute Kidney Injury in Pediatric Heart Transplant Recipients.
J Pediatr Intensive Care. 2021 Oct 8;13(1):37-45. doi: 10.1055/s-0041-1736336. eCollection 2024 Mar.
4
Cardiopulmonary bypass associated acute kidney injury: better understanding and better prevention.
Ren Fail. 2024 Dec;46(1):2331062. doi: 10.1080/0886022X.2024.2331062. Epub 2024 Mar 21.
5
Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates.
Cureus. 2023 Oct 9;15(10):e46737. doi: 10.7759/cureus.46737. eCollection 2023 Oct.
9
Prediction of acute kidney injury risk after cardiac surgery: using a hybrid machine learning algorithm.
BMC Med Inform Decis Mak. 2022 May 18;22(1):137. doi: 10.1186/s12911-022-01859-w.

本文引用的文献

1
Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury.
Kidney Int. 2016 Jul;90(1):100-8. doi: 10.1016/j.kint.2016.02.017. Epub 2016 Apr 16.
2
Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1269-83. doi: 10.1152/ajprenal.00543.2015. Epub 2016 Jan 13.
3
Conduction of feedback-mediated signal in a computational model of coupled nephrons.
Math Med Biol. 2016 Mar;33(1):87-106. doi: 10.1093/imammb/dqv005. Epub 2015 Mar 19.
4
Mathematical modeling of renal hemodynamics in physiology and pathophysiology.
Math Biosci. 2015 Jun;264:8-20. doi: 10.1016/j.mbs.2015.02.016. Epub 2015 Mar 9.
5
Long-term measurement of renal cortical and medullary tissue oxygenation and perfusion in unanesthetized sheep.
Am J Physiol Regul Integr Comp Physiol. 2015 May 15;308(10):R832-9. doi: 10.1152/ajpregu.00515.2014. Epub 2015 Mar 11.
6
A mathematical model of the rat nephron: glucose transport.
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118. doi: 10.1152/ajprenal.00505.2014. Epub 2015 Feb 18.
7
A mathematical model of rat proximal tubule and loop of Henle.
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.
8
Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F967-80. doi: 10.1152/ajprenal.00600.2014. Epub 2015 Jan 28.
10
Impact of renal medullary three-dimensional architecture on oxygen transport.
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F263-72. doi: 10.1152/ajprenal.00149.2014. Epub 2014 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验