Suppr超能文献

从标记轨迹估计心脏变形时的降噪

Noise reduction in estimating cardiac deformation from marker tracks.

作者信息

Muijtjens A M, Roos J M, Prinzen T T, Hasman A, Reneman R S, Arts T

机构信息

Department of Medical Informatics, University of Limburg, Maastricht, The Netherlands.

出版信息

Am J Physiol. 1990 Feb;258(2 Pt 2):H599-605. doi: 10.1152/ajpheart.1990.258.2.H599.

Abstract

Deformation of the cardiac wall is measured by using optical or radiopaque markers attached to the wall. When digitized images are used, the accuracy of the measurement of a marker position is limited by pixel resolution and the size of the marker. The spatial accuracy is improved by singular value decomposition (SVD) filtering. This filtering procedure is based on the assumption that displacements of markers are mutually related because they are embedded in a common continuum. In a computer stimulation with 48 markers in 51 video frames, the accuracy of the measurement of a marker position improved from 0.14 to 0.045 (SD) pixel. In an open-chest animal experiment, with markers on the surface of the heart, the deformation patterns were extracted more clearly using SVD filtering, while mutually related high-frequency components were not suppressed. In a 50-frame sequence of 256 X 256 video images of a 45 mm X 35 mm deforming surface with 50 markers of 8 pixels in diameter, the marker position resolution improves from 0.1 to 0.03 (SD) pixel (6 microns). Strain is determined with an accuracy of 0.002 over a distance of 30 pixels (6 mm).

摘要

通过使用附着在心脏壁上的光学或不透射线标记物来测量心脏壁的变形。当使用数字化图像时,标记物位置测量的准确性受到像素分辨率和标记物大小的限制。通过奇异值分解(SVD)滤波可提高空间准确性。此滤波过程基于这样的假设,即标记物的位移相互关联,因为它们嵌入在一个共同的连续体中。在一个包含51个视频帧中48个标记物的计算机模拟中,标记物位置测量的准确性从0.14提高到了0.045(标准差)像素。在一个开胸动物实验中,在心脏表面放置标记物,使用SVD滤波能更清晰地提取变形模式,同时不会抑制相互关联的高频成分。在一个45毫米×35毫米变形表面的256×256视频图像的50帧序列中,有50个直径为8像素的标记物,标记物位置分辨率从0.1提高到了0.03(标准差)像素(6微米)。在30像素(6毫米)的距离上,应变的测定精度为0.002。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验