Suppr超能文献

通过低秩近似外推不完整标记轨迹。

Extrapolation of incomplete marker tracks by lower rank approximation.

作者信息

Muijtjens A M, Roos J M, Arts T, Hasman A, Reneman R S

机构信息

Department of Medical Informatics, Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.

出版信息

Int J Biomed Comput. 1993 Nov;33(3-4):219-39. doi: 10.1016/0020-7101(93)90037-7.

Abstract

Motion and deformation of an object such as the heart may be measured by tracking optical or radiopaque markers. In the experimental situation markers may fail to be detected due to occlusion or lack of contrast. As a result a continuous marker track is observed in separated parts, which often cannot be directly identified as corresponding to one marker. This paper presents a method of extrapolating a partly known track by using information provided by the known track part and the available complete tracks of other markers. The extrapolations are obtained by iteratively fitting a lower rank matrix to the set of noisy, incomplete marker tracks. The performance is evaluated with computer-simulated data and data obtained in an animal experiment. In both cases 43% of the available complete tracks were made incomplete by removal of track parts varying in length from 3% up to 44%. For the simulated data comparison of the extrapolations with true signal values results in a root mean square (RMS) error about equal to the noise level. For the animal experiment, when comparing the extrapolations with the measured values, in images of 256 x 256 pixels, the RMS error was found to be +/- 0.5 pixel, which is quite small relative to the total excursion of a marker (20 pixels). Estimation of the missing data by applying BMDPAM (BMDP Statistical Software Inc.) to the same data results in RMS errors which are about twice as high.

摘要

诸如心脏之类的物体的运动和变形可以通过跟踪光学或不透射线的标记物来测量。在实验情况下,由于遮挡或对比度不足,标记物可能无法被检测到。结果,在分离的部分中观察到连续的标记物轨迹,这些轨迹通常无法直接确定为对应于一个标记物。本文提出了一种通过使用已知轨迹部分提供的信息和其他标记物的可用完整轨迹来推断部分已知轨迹的方法。通过将低秩矩阵迭代拟合到噪声大、不完整的标记物轨迹集来获得推断结果。使用计算机模拟数据和在动物实验中获得的数据对性能进行评估。在这两种情况下,通过去除长度从3%到44%不等的轨迹部分,使43%的可用完整轨迹变得不完整。对于模拟数据,将推断结果与真实信号值进行比较,得到的均方根(RMS)误差约等于噪声水平。对于动物实验,在将推断结果与测量值进行比较时,在256×256像素的图像中,发现RMS误差为±0.5像素,相对于标记物的总偏移(20像素)来说相当小。通过将BMDPAM(BMDP统计软件公司)应用于相同数据来估计缺失数据,得到的RMS误差约为前者的两倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验