Kastelic Vanja, Drobnic Katja
National Forensic Laboratory, General Police Directorate, Police, Ministry of the Interior, Vodovodna 95, Ljubljana, Slovenia.
Croat Med J. 2012 Oct;53(5):401-8. doi: 10.3325/cmj.2012.53.401.
To analyze two phenotype characteristics--eye and hair color--using single-nucleotide polymorphisms (SNPs) and evaluate their prediction accuracy in Slovenian population.
Twelve SNPs (OCA2 - rs1667394, rs7170989, rs1800407, rs7495174; HERC2 - rs1129038, rs12913832; MC1R - rs1805005, rs1805008; TYR - rs1393350; SLC45A2 - rs16891982, rs26722; SLC24A5 - rs1426654) were used for the development of a single multiplex assay. The single multiplex assay was based on SNaPshot chemistry and capillary electrophoresis. In order to evaluate the accuracy of the prediction of eye and hair color, we used the logistic regression model and the Bayesian network model, and compared the parameters of both.
The new single multiplex assay displayed high levels of genotyping sensitivity with complete profiles generated from as little as 62 pg of DNA. Based on a prior evaluation of all SNPs in a single multiplex, we focused on the five most statistically significant in our population in order to investigate the predictive value. The two prediction models performed reliably without prior ancestry information, and revealed very good accuracy for both eye and hair color. Both models determined the highest predictive value for rs12913832 (P<0.0001), while the other four SNPs (rs1393350, rs1800407, rs1805008, and rs7495174) showed additional association for color prediction.
We developed a sensitive and reliable single multiplex genotyping assay. More samples from different populations should be analyzed before this assay could be used as one of the supplemental tools in tracing unknown individuals in more complicated crime investigations.
利用单核苷酸多态性(SNP)分析眼睛和头发颜色这两种表型特征,并评估其在斯洛文尼亚人群中的预测准确性。
使用12个SNP(OCA2 - rs1667394、rs7170989、rs1800407、rs7495174;HERC2 - rs1129038、rs12913832;MC1R - rs1805005、rs1805008;TYR - rs1393350;SLC45A2 - rs16891982、rs26722;SLC24A5 - rs1426654)开发一种单一多重检测方法。该单一多重检测方法基于SNaPshot化学和毛细管电泳。为了评估眼睛和头发颜色预测的准确性,我们使用了逻辑回归模型和贝叶斯网络模型,并比较了两者的参数。
新的单一多重检测方法显示出高水平的基因分型灵敏度,从低至62 pg的DNA中就能生成完整的图谱。基于对单一多重检测中所有SNP的预先评估,我们聚焦于在我们人群中统计学意义最显著的5个SNP,以研究其预测价值。这两种预测模型在没有先验祖先信息的情况下表现可靠,并且对眼睛和头发颜色都显示出非常好的准确性。两种模型都确定rs12913832的预测价值最高(P<0.0001),而其他4个SNP(rs1393350、rs1800407、rs1805008和rs7495174)在颜色预测方面显示出额外的关联性。
我们开发了一种灵敏且可靠的单一多重基因分型检测方法。在该检测方法可作为更复杂犯罪调查中追踪未知个体的补充工具之一使用之前,应分析更多来自不同人群的样本。