Ehler M, Filbir F, Mhaskar H N
Helmholtz Zentrum München, Institute of Biomathematics and Biometry, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
J Comput Biol. 2012 Nov;19(11):1251-64. doi: 10.1089/cmb.2012.0187. Epub 2012 Oct 26.
Diffusion geometry techniques are useful to classify patterns and visualize high-dimensional datasets. Building upon ideas from diffusion geometry, we outline our mathematical foundations for learning a function on high-dimension biomedical data in a local fashion from training data. Our approach is based on a localized summation kernel, and we verify the computational performance by means of exact approximation rates. After these theoretical results, we apply our scheme to learn early disease stages in standard and new biomedical datasets.
扩散几何技术有助于对模式进行分类并可视化高维数据集。基于扩散几何的思想,我们概述了从训练数据中以局部方式学习高维生物医学数据上的函数的数学基础。我们的方法基于局部求和核,并通过精确的近似率验证计算性能。在得到这些理论结果之后,我们将我们的方案应用于在标准和新的生物医学数据集中学习疾病早期阶段。