Suppr超能文献

肺切片中的气道-实质相互依存关系。

Airway-parenchymal interdependence in the lung slice.

机构信息

College of Medicine, University of Vermont, Burlington, VT 05405, United States.

出版信息

Respir Physiol Neurobiol. 2013 Jan 15;185(2):211-6. doi: 10.1016/j.resp.2012.10.015. Epub 2012 Nov 2.

Abstract

The explanted lung slice has become a popular in vitro system for studying how airways contract. Because the forces of airway-parenchymal interdependence are such important modulators of airway narrowing, it is of significant interest to understand how the parenchyma around a constricting airway in a lung slice behaves. We have previously shown that the predictions of the 2-dimensional distortion field around a constricting airway are substantially different depending on whether the parenchyma is modeled as an elastic continuum versus a network of hexagonally arranged springs, which raises the question as to which model best explains the lung slice. We treated lung slices with methacholine and then followed the movement of a set of parenchymal landmarks around the airway as it narrowed. The resulting parenchymal displacement field was compared to the displacement fields predicted by the continuum and hexagonal spring network models. The predictions of the continuum model were much closer to the measured data than were those of the hexagonal spring network model, suggesting that the parenchyma in the lung slice behaves like an elastic continuum rather than a network of discrete springs. This may be because the alveoli of the lung slice are filled with agarose in order to provide structural stability, causing the parenchyma in the slice to act like a true mechanical continuum. How the air-filled parenchyma in the intact lung behave in vivo remains an open question.

摘要

离体肺切片已成为研究气道收缩的一种流行的体外系统。由于气道-实质相互依存的力是气道狭窄的重要调节剂,因此了解肺切片中收缩气道周围的实质如何表现是非常重要的。我们之前已经表明,取决于将实质建模为弹性连续体还是六边形排列的弹簧网络,对收缩气道周围的二维变形场的预测有很大的不同,这就提出了哪个模型最能解释肺切片的问题。我们用乙酰甲胆碱处理肺切片,然后随着气道变窄,观察一组实质标志点围绕气道的运动。将得到的实质位移场与连续体和六边体弹簧网络模型的位移场进行比较。连续体模型的预测比六边体弹簧网络模型的预测更接近测量数据,这表明肺切片中的实质表现为弹性连续体,而不是离散弹簧网络。这可能是因为肺切片的肺泡中充满了琼脂糖,以提供结构稳定性,导致切片中的实质表现得像一个真正的机械连续体。在体内,完整肺中的充气实质如何表现仍然是一个悬而未决的问题。

相似文献

1
Airway-parenchymal interdependence in the lung slice.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):211-6. doi: 10.1016/j.resp.2012.10.015. Epub 2012 Nov 2.
2
Continuum vs. spring network models of airway-parenchymal interdependence.
J Appl Physiol (1985). 2012 Jul;113(1):124-9. doi: 10.1152/japplphysiol.01578.2011. Epub 2012 Apr 12.
3
Mechanical interactions between adjacent airways in the lung.
J Appl Physiol (1985). 2014 Mar 15;116(6):628-34. doi: 10.1152/japplphysiol.01180.2013. Epub 2014 Jan 30.
4
Airway-parenchymal interdependence after airway contraction in rat lung explants.
J Appl Physiol (1985). 1998 Jul;85(1):231-7. doi: 10.1152/jappl.1998.85.1.231.
5
Influence of parenchymal heterogeneity on airway-parenchymal interdependence.
Respir Physiol Neurobiol. 2013 Aug 15;188(2):94-101. doi: 10.1016/j.resp.2013.06.005. Epub 2013 Jun 11.
6
Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction.
J Appl Physiol (1985). 2007 May;102(5):1912-20. doi: 10.1152/japplphysiol.00980.2006. Epub 2007 Jan 4.
7
Resistance to alveolar shape change limits range of force propagation in lung parenchyma.
Respir Physiol Neurobiol. 2015 Jun;211:22-8. doi: 10.1016/j.resp.2015.03.004. Epub 2015 Mar 23.
8
Methacholine-induced bronchoconstriction and airway smooth muscle in the guinea pig.
J Appl Physiol (1985). 1996 Feb;80(2):437-44. doi: 10.1152/jappl.1996.80.2.437.
9
Airway narrowing in porcine bronchi with and without lung parenchyma.
Eur Respir J. 2005 Nov;26(5):804-11. doi: 10.1183/09031936.05.00065405.
10
The mechanics of the lung parenchyma and airway responsiveness to metacholine.
Monaldi Arch Chest Dis. 2004 Oct-Dec;61(4):222-5. doi: 10.4081/monaldi.2004.685.

引用本文的文献

1
High throughput screening of airway constriction in mouse lung slices.
Sci Rep. 2024 Aug 29;14(1):20133. doi: 10.1038/s41598-024-71170-3.
3
Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases.
Front Pharmacol. 2023 May 16;14:1162889. doi: 10.3389/fphar.2023.1162889. eCollection 2023.
4
Airway Transmural Pressures in an Airway Tree During Bronchoconstriction in Asthma.
J Eng Sci Med Diagn Ther. 2019 Feb;2(1):0110051-110056. doi: 10.1115/1.4042478. Epub 2019 Feb 13.
5
The micromechanics of lung alveoli: structure and function of surfactant and tissue components.
Histochem Cell Biol. 2018 Dec;150(6):661-676. doi: 10.1007/s00418-018-1747-9. Epub 2018 Nov 2.
6
Attenuates Airway Remodeling via PI3K/Akt/NF-B Pathway in Cigarette Smoke Mediated-COPD Rats Model.
Evid Based Complement Alternat Med. 2018 May 13;2018:1281420. doi: 10.1155/2018/1281420. eCollection 2018.
7
Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice.
Front Physiol. 2016 Jul 21;7:309. doi: 10.3389/fphys.2016.00309. eCollection 2016.
9
Modeling the Progression of Epithelial Leak Caused by Overdistension.
Cell Mol Bioeng. 2016 Mar;9(1):151-161. doi: 10.1007/s12195-015-0426-3. Epub 2016 Jan 19.
10
Airway and Extracellular Matrix Mechanics in COPD.
Front Physiol. 2015 Dec 2;6:346. doi: 10.3389/fphys.2015.00346. eCollection 2015.

本文引用的文献

1
Quantifying parenchymal tethering in a finite element simulation of a human lung slice under bronchoconstriction.
Respir Physiol Neurobiol. 2012 Aug 15;183(2):85-90. doi: 10.1016/j.resp.2012.06.014. Epub 2012 Jun 23.
2
Dilatation of the constricted human airway by tidal expansion of lung parenchyma.
Am J Respir Crit Care Med. 2012 Aug 1;186(3):225-32. doi: 10.1164/rccm.201202-0368OC. Epub 2012 Jun 7.
3
Continuum vs. spring network models of airway-parenchymal interdependence.
J Appl Physiol (1985). 2012 Jul;113(1):124-9. doi: 10.1152/japplphysiol.01578.2011. Epub 2012 Apr 12.
4
Exploring lung physiology in health and disease with lung slices.
Pulm Pharmacol Ther. 2011 Oct;24(5):452-65. doi: 10.1016/j.pupt.2011.05.001. Epub 2011 May 12.
5
Influence of airway wall stiffness and parenchymal tethering on the dynamics of bronchoconstriction.
Am J Physiol Lung Cell Mol Physiol. 2010 Jul;299(1):L98-L108. doi: 10.1152/ajplung.00011.2010. Epub 2010 Apr 30.
7
A biomechanical model of agonist-initiated contraction in the asthmatic airway.
Respir Physiol Neurobiol. 2010 Jan 31;170(1):44-58. doi: 10.1016/j.resp.2009.11.006. Epub 2009 Nov 22.
8
Transient oscillatory force-length behavior of activated airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2009 Aug;297(2):L362-72. doi: 10.1152/ajplung.00095.2009. Epub 2009 Jun 12.
9
Computational assessment of airway wall stiffness in vivo in allergically inflamed mouse models of asthma.
J Appl Physiol (1985). 2008 Jun;104(6):1601-10. doi: 10.1152/japplphysiol.01207.2007. Epub 2008 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验