Suppr超能文献

实质异质性对气道-实质相互依存关系的影响。

Influence of parenchymal heterogeneity on airway-parenchymal interdependence.

机构信息

College of Medicine, University of Vermont, Burlington, VT 05405, USA.

出版信息

Respir Physiol Neurobiol. 2013 Aug 15;188(2):94-101. doi: 10.1016/j.resp.2013.06.005. Epub 2013 Jun 11.

Abstract

To estimate the influence of parenchymal heterogeneities on airway-parenchymal interdependence, we considered a circular airway embedded within elastic parenchyma modeled as (1) a hexagonal spring network, (2) a triangular spring network, or (3) a continuum. The deformation in the parenchyma due to active airway contraction was simulated using the finite element method. Random perturbations of elastic moduli in the parenchyma did not significantly affect the overall pattern of force transmission. By contrast, when elastic moduli were increased along a path projecting radially outward from the airway, the hexagonal spring network model predicted significantly increased force along this line as the airway contracted, but this was not observed in other two models. These results indicate that tissue heterogeneities generally have minimal effect on the global nature of airway-parenchymal interdependence. However, in the exceptional circumstance of scar tissue aligned radially from the airway wall, parenchymal distortion forces may propagate much farther from the airway wall than was previously thought.

摘要

为了估计实质异质性对气道-实质相互依存关系的影响,我们考虑了一个嵌入在弹性实质中的圆形气道,将弹性实质建模为 (1) 六方晶格弹簧网络、(2) 三角晶格弹簧网络或 (3) 连续体。使用有限元方法模拟了由于气道主动收缩而导致的实质变形。实质中弹性模量的随机扰动不会显著影响力传递的整体模式。相比之下,当弹性模量沿从气道径向向外投影的路径增加时,六方晶格弹簧网络模型预测气道收缩时沿该线的力会显著增加,但在其他两种模型中没有观察到这种情况。这些结果表明,组织异质性通常对气道-实质相互依存关系的全局性质影响很小。然而,在气道壁径向排列的疤痕组织这种特殊情况下,实质变形力可能会比以前认为的更远地从气道壁传播。

相似文献

1
Influence of parenchymal heterogeneity on airway-parenchymal interdependence.
Respir Physiol Neurobiol. 2013 Aug 15;188(2):94-101. doi: 10.1016/j.resp.2013.06.005. Epub 2013 Jun 11.
2
Continuum vs. spring network models of airway-parenchymal interdependence.
J Appl Physiol (1985). 2012 Jul;113(1):124-9. doi: 10.1152/japplphysiol.01578.2011. Epub 2012 Apr 12.
3
Mechanical interactions between adjacent airways in the lung.
J Appl Physiol (1985). 2014 Mar 15;116(6):628-34. doi: 10.1152/japplphysiol.01180.2013. Epub 2014 Jan 30.
4
Airway-parenchymal interdependence in the lung slice.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):211-6. doi: 10.1016/j.resp.2012.10.015. Epub 2012 Nov 2.
5
Resistance to alveolar shape change limits range of force propagation in lung parenchyma.
Respir Physiol Neurobiol. 2015 Jun;211:22-8. doi: 10.1016/j.resp.2015.03.004. Epub 2015 Mar 23.
6
Airway-parenchymal interdependence after airway contraction in rat lung explants.
J Appl Physiol (1985). 1998 Jul;85(1):231-7. doi: 10.1152/jappl.1998.85.1.231.
7
Lung tissue resistance and hysteretic moduli of lung parenchyma.
J Appl Physiol (1985). 1995 Aug;79(2):461-6. doi: 10.1152/jappl.1995.79.2.461.
8
Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction.
J Appl Physiol (1985). 2007 May;102(5):1912-20. doi: 10.1152/japplphysiol.00980.2006. Epub 2007 Jan 4.
9
Airway-parenchymal interdependence.
Compr Physiol. 2012 Jul;2(3):1921-35. doi: 10.1002/cphy.c110039.
10
The mechanics of the lung parenchyma and airway responsiveness to metacholine.
Monaldi Arch Chest Dis. 2004 Oct-Dec;61(4):222-5. doi: 10.4081/monaldi.2004.685.

引用本文的文献

1
A scale-free model of acute and ventilator-induced lung injury: a network theory approach inspired by seismology.
Front Netw Physiol. 2024 May 1;4:1392701. doi: 10.3389/fnetp.2024.1392701. eCollection 2024.
2
Modeling Ventilator-Induced Lung Injury and Neutrophil Infiltration to Infer Injury Interdependence.
Ann Biomed Eng. 2023 Dec;51(12):2837-2852. doi: 10.1007/s10439-023-03346-3. Epub 2023 Aug 17.
3
Predicting alveolar ventilation heterogeneity in pulmonary fibrosis using a non-uniform polyhedral spring network model.
Front Netw Physiol. 2023 Feb 1;3:1124223. doi: 10.3389/fnetp.2023.1124223. eCollection 2023.
4
Whole-lung finite-element models for mechanical ventilation and respiratory research applications.
Front Physiol. 2022 Oct 4;13:984286. doi: 10.3389/fphys.2022.984286. eCollection 2022.
5
Spatiotemporal distribution of cellular injury and leukocytes during the progression of ventilator-induced lung injury.
Am J Physiol Lung Cell Mol Physiol. 2022 Sep 1;323(3):L281-L296. doi: 10.1152/ajplung.00207.2021. Epub 2022 Jun 14.
6
Surfactant-Mediated Airway and Acinar Interactions in a Multi-Scale Model of a Healthy Lung.
Front Physiol. 2020 Aug 14;11:941. doi: 10.3389/fphys.2020.00941. eCollection 2020.
7
Is Progression of Pulmonary Fibrosis due to Ventilation-induced Lung Injury?
Am J Respir Crit Care Med. 2019 Jul 15;200(2):140-151. doi: 10.1164/rccm.201903-0497PP.
8
The micromechanics of lung alveoli: structure and function of surfactant and tissue components.
Histochem Cell Biol. 2018 Dec;150(6):661-676. doi: 10.1007/s00418-018-1747-9. Epub 2018 Nov 2.
9
Alveolar Micromechanics in Bleomycin-induced Lung Injury.
Am J Respir Cell Mol Biol. 2018 Dec;59(6):757-769. doi: 10.1165/rcmb.2018-0044OC.

本文引用的文献

1
Airway-parenchymal interdependence in the lung slice.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):211-6. doi: 10.1016/j.resp.2012.10.015. Epub 2012 Nov 2.
2
Quantifying parenchymal tethering in a finite element simulation of a human lung slice under bronchoconstriction.
Respir Physiol Neurobiol. 2012 Aug 15;183(2):85-90. doi: 10.1016/j.resp.2012.06.014. Epub 2012 Jun 23.
3
Does increased baseline ventilation heterogeneity following chest wall strapping predispose to airway hyperresponsiveness?
J Appl Physiol (1985). 2012 Jul;113(1):25-30. doi: 10.1152/japplphysiol.01582.2011. Epub 2012 May 3.
4
Continuum vs. spring network models of airway-parenchymal interdependence.
J Appl Physiol (1985). 2012 Jul;113(1):124-9. doi: 10.1152/japplphysiol.01578.2011. Epub 2012 Apr 12.
5
Analysis of regional mechanics in canine lung injury using forced oscillations and 3D image registration.
Ann Biomed Eng. 2011 Mar;39(3):1112-24. doi: 10.1007/s10439-010-0214-0. Epub 2010 Dec 4.
6
Influence of airway wall stiffness and parenchymal tethering on the dynamics of bronchoconstriction.
Am J Physiol Lung Cell Mol Physiol. 2010 Jul;299(1):L98-L108. doi: 10.1152/ajplung.00011.2010. Epub 2010 Apr 30.
7
Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape.
J Appl Physiol (1985). 2009 Sep;107(3):912-20. doi: 10.1152/japplphysiol.00324.2009. Epub 2009 Jul 9.
8
Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma.
Eur Respir J. 2007 May;29(5):834-60. doi: 10.1183/09031936.00112606.
9
Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction.
J Appl Physiol (1985). 2007 May;102(5):1912-20. doi: 10.1152/japplphysiol.00980.2006. Epub 2007 Jan 4.
10
Effects of heterogeneities on the partitioning of airway and tissue properties in normal mice.
J Appl Physiol (1985). 2007 Mar;102(3):859-69. doi: 10.1152/japplphysiol.00884.2006. Epub 2006 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验