Suppr超能文献

肺中相邻气道之间的机械相互作用。

Mechanical interactions between adjacent airways in the lung.

作者信息

Ma Baoshun, Bates Jason H T

机构信息

Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont.

出版信息

J Appl Physiol (1985). 2014 Mar 15;116(6):628-34. doi: 10.1152/japplphysiol.01180.2013. Epub 2014 Jan 30.

Abstract

The forces of mechanical interdependence between the airways and the parenchyma in the lung are powerful modulators of airways responsiveness. Little is known, however, about the extent to which adjacent airways affect each other's ability to narrow due to distortional forces generated within the intervening parenchyma. We developed a two-dimensional computational model of two airways embedded in parenchyma. The parenchyma itself was modeled in three ways: 1) as a network of hexagonally arranged springs, 2) as a network of triangularly arranged springs, and 3) as an elastic continuum. In all cases, we determined how the narrowing of one airway was affected when the other airway was relaxed vs. when it narrowed to the same extent as the first airway. For the continuum and triangular network models, interactions between airways were negligible unless the airways lay within about two relaxed diameters of each other, but even at this distance the interactions were small. By contrast, the hexagonal spring network model predicted that airway-airway interactions mediated by the parenchyma can be substantial for any degree of airway separation at intermediate values of airway contraction forces. Evidence to date suggests that the parenchyma may be better represented by the continuum model, which suggests that the parenchyma does not mediate significant interactions between narrowing airways.

摘要

气道与肺实质之间的机械相互依存力是气道反应性的强大调节因素。然而,对于相邻气道因中间实质内产生的变形力而相互影响其狭窄能力的程度,人们知之甚少。我们建立了一个二维计算模型,模拟两个嵌入实质内的气道。实质本身通过三种方式建模:1)作为六边形排列弹簧的网络,2)作为三角形排列弹簧的网络,3)作为弹性连续体。在所有情况下,我们都确定了一个气道变窄时,另一个气道处于松弛状态与变窄到与第一个气道相同程度时,第一个气道变窄是如何受到影响的。对于连续体和三角形网络模型,气道之间的相互作用可以忽略不计,除非气道彼此之间的距离在大约两个松弛直径范围内,但即使在这个距离,相互作用也很小。相比之下,六边形弹簧网络模型预测,在气道收缩力处于中间值时,实质介导的气道间相互作用对于任何程度的气道间距都可能很大。迄今为止的证据表明,连续体模型可能能更好地体现实质,这表明实质不会介导狭窄气道之间的显著相互作用。

相似文献

1
Mechanical interactions between adjacent airways in the lung.
J Appl Physiol (1985). 2014 Mar 15;116(6):628-34. doi: 10.1152/japplphysiol.01180.2013. Epub 2014 Jan 30.
2
Continuum vs. spring network models of airway-parenchymal interdependence.
J Appl Physiol (1985). 2012 Jul;113(1):124-9. doi: 10.1152/japplphysiol.01578.2011. Epub 2012 Apr 12.
3
Airway-parenchymal interdependence in the lung slice.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):211-6. doi: 10.1016/j.resp.2012.10.015. Epub 2012 Nov 2.
4
Influence of parenchymal heterogeneity on airway-parenchymal interdependence.
Respir Physiol Neurobiol. 2013 Aug 15;188(2):94-101. doi: 10.1016/j.resp.2013.06.005. Epub 2013 Jun 11.
5
Resistance to alveolar shape change limits range of force propagation in lung parenchyma.
Respir Physiol Neurobiol. 2015 Jun;211:22-8. doi: 10.1016/j.resp.2015.03.004. Epub 2015 Mar 23.
6
Airway-parenchymal interdependence.
Compr Physiol. 2012 Jul;2(3):1921-35. doi: 10.1002/cphy.c110039.
7
The mechanics of the lung parenchyma and airway responsiveness to metacholine.
Monaldi Arch Chest Dis. 2004 Oct-Dec;61(4):222-5. doi: 10.4081/monaldi.2004.685.
8
Airway stability and heterogeneity in the constricted lung.
J Appl Physiol (1985). 2001 Sep;91(3):1185-92. doi: 10.1152/jappl.2001.91.3.1185.
9
An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics.
Ann Biomed Eng. 2006 Nov;34(11):1691-704. doi: 10.1007/s10439-006-9184-7. Epub 2006 Oct 4.
10
Lung parenchymal shear modulus, airway wall remodeling, and bronchial hyperresponsiveness.
J Appl Physiol (1985). 1997 Jul;83(1):140-7. doi: 10.1152/jappl.1997.83.1.140.

引用本文的文献

1
Modeling Ventilator-Induced Lung Injury and Neutrophil Infiltration to Infer Injury Interdependence.
Ann Biomed Eng. 2023 Dec;51(12):2837-2852. doi: 10.1007/s10439-023-03346-3. Epub 2023 Aug 17.
2
Early Endothelial Signaling Transduction in Developing Lung Edema.
Life (Basel). 2023 May 24;13(6):1240. doi: 10.3390/life13061240.
3
The impact of heterogeneity of the air-blood barrier on control of lung extravascular water and alveolar gas exchange.
Front Netw Physiol. 2023 May 11;3:1142245. doi: 10.3389/fnetp.2023.1142245. eCollection 2023.
4
Spatiotemporal distribution of cellular injury and leukocytes during the progression of ventilator-induced lung injury.
Am J Physiol Lung Cell Mol Physiol. 2022 Sep 1;323(3):L281-L296. doi: 10.1152/ajplung.00207.2021. Epub 2022 Jun 14.
5
Measurement of the Total Lung Volume Using an Adjusted Single-Breath Helium Dilution Method in Patients With Obstructive Lung Disease.
Front Med (Lausanne). 2021 Sep 8;8:737360. doi: 10.3389/fmed.2021.737360. eCollection 2021.
6
Perioperative Pulmonary Atelectasis: Part I. Biology and Mechanisms.
Anesthesiology. 2022 Jan 1;136(1):181-205. doi: 10.1097/ALN.0000000000003943.
7
Percolation of collagen stress in a random network model of the alveolar wall.
Sci Rep. 2021 Aug 17;11(1):16654. doi: 10.1038/s41598-021-95911-w.
8
Elevation in lung volume and preventing catastrophic airway closure in asthmatics during bronchoconstriction.
PLoS One. 2018 Dec 19;13(12):e0208337. doi: 10.1371/journal.pone.0208337. eCollection 2018.
9
The micromechanics of lung alveoli: structure and function of surfactant and tissue components.
Histochem Cell Biol. 2018 Dec;150(6):661-676. doi: 10.1007/s00418-018-1747-9. Epub 2018 Nov 2.
10
A Distribution-Moment Approximation for Coupled Dynamics of the Airway Wall and Airway Smooth Muscle.
Biophys J. 2018 Jan 23;114(2):493-501. doi: 10.1016/j.bpj.2017.11.020.

本文引用的文献

1
Influence of parenchymal heterogeneity on airway-parenchymal interdependence.
Respir Physiol Neurobiol. 2013 Aug 15;188(2):94-101. doi: 10.1016/j.resp.2013.06.005. Epub 2013 Jun 11.
2
A model of surfactant-induced surface tension effects on the parenchymal tethering of pulmonary airways.
J Biomech. 2013 Jan 18;46(2):319-28. doi: 10.1016/j.jbiomech.2012.11.031. Epub 2012 Dec 9.
3
Airway-parenchymal interdependence in the lung slice.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):211-6. doi: 10.1016/j.resp.2012.10.015. Epub 2012 Nov 2.
4
Continuum vs. spring network models of airway-parenchymal interdependence.
J Appl Physiol (1985). 2012 Jul;113(1):124-9. doi: 10.1152/japplphysiol.01578.2011. Epub 2012 Apr 12.
5
Multi-scale lung modeling.
J Appl Physiol (1985). 2011 May;110(5):1466-72. doi: 10.1152/japplphysiol.01289.2010. Epub 2011 Feb 3.
6
Emergent behavior of regional heterogeneity in the lung and its effects on respiratory impedance.
J Appl Physiol (1985). 2011 May;110(5):1473-81. doi: 10.1152/japplphysiol.01287.2010. Epub 2011 Feb 3.
7
Self-organized patterns of airway narrowing.
J Appl Physiol (1985). 2011 May;110(5):1482-6. doi: 10.1152/japplphysiol.01163.2010. Epub 2011 Jan 20.
8
Influence of airway wall stiffness and parenchymal tethering on the dynamics of bronchoconstriction.
Am J Physiol Lung Cell Mol Physiol. 2010 Jul;299(1):L98-L108. doi: 10.1152/ajplung.00011.2010. Epub 2010 Apr 30.
9
A biomechanical model of agonist-initiated contraction in the asthmatic airway.
Respir Physiol Neurobiol. 2010 Jan 31;170(1):44-58. doi: 10.1016/j.resp.2009.11.006. Epub 2009 Nov 22.
10
Computational assessment of airway wall stiffness in vivo in allergically inflamed mouse models of asthma.
J Appl Physiol (1985). 2008 Jun;104(6):1601-10. doi: 10.1152/japplphysiol.01207.2007. Epub 2008 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验