Flachskampf F A, Weyman A E, Guerrero J L, Thomas J D
Massachusetts General Hospital, Harvard Medical School, Boston 02114.
J Am Coll Cardiol. 1990 Apr;15(5):1173-80. doi: 10.1016/0735-1097(90)90260-v.
Fluid dynamics suggests that orifice geometry is a determinant of discharge properties and, therefore, should influence empiric constants in formulas (such as the Gorlin formula) to calculate stenotic valve area. An in vitro study utilizing a model of transmitral flow was conducted to investigate how the discharge coefficient changes with 1) orifice eccentricity (ratio of long to short diameter), 2) absolute area, 3) the presence of a nozzle-like inlet, and 4) varying flow. Twenty-three orifices with areas varying between 0.3 and 2.5 cm2 and eccentricities from 1:1, or circular, to 5:1, or elliptic, were tested. The calculated discharge coefficients ranged between 0.675 and 0.93. For a given area, the discharge coefficient decreased by a mean value (+/- SD) of 5.5 +/- 1.3% between circular orifices and 5:1 ellipses. Discharge coefficients increased by a mean of 8.9 +/- 3.5% from 0.3 to 2.5 cm2 area within each eccentricity class. A gradually tapering inlet (nozzle) raised the discharge coefficient by 8.8 +/- 3.9%, leading to a discharge coefficient between 0.81 and 0.93 for round orifices. The discharge coefficient did not change appreciably with flow. The concept of the discharge coefficient and its role in assessing restrictive orifices in general by hydraulic formulas (for example, the Gorlin and pressure half-time calculations) are discussed.
流体动力学表明,孔口几何形状是流量特性的一个决定因素,因此应该会影响用于计算狭窄瓣膜面积的公式(如戈林公式)中的经验常数。开展了一项利用二尖瓣血流模型的体外研究,以探究流量系数如何随以下因素变化:1)孔口偏心度(长径与短径之比)、2)绝对面积、3)是否存在喷嘴状入口以及4)不同的流量。测试了23个孔口,其面积在0.3至2.5平方厘米之间,偏心度从1:1(圆形)到5:1(椭圆形)。计算得到的流量系数在0.675至0.93之间。对于给定面积,圆形孔口与5:1椭圆形孔口之间的流量系数平均降低了5.5±1.3%。在每个偏心度类别中,流量系数从0.3平方厘米至2.5平方厘米平均增加了8.9±3.5%。逐渐变细的入口(喷嘴)使流量系数提高了8.8±3.9%,圆形孔口的流量系数在0.81至0.93之间。流量系数随流量变化不明显。本文讨论了流量系数的概念及其在通过水力公式(例如戈林公式和压力半衰期计算)评估限制性孔口方面的作用。