Suppr超能文献

基于支持向量机和遗传算法的心率变异性分类

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm.

作者信息

Ashtiyani M, Navaei Lavasani S, Asgharzadeh Alvar A, Deevband M R

机构信息

Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

J Biomed Phys Eng. 2018 Dec 1;8(4):423-434. eCollection 2018 Dec.

Abstract

BACKGROUND

Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.

OBJECTIVE

In this study, we aimed to evaluate the efficiency of discrete wavelet transform (DWT) based features extracted from HRV which were further selected by genetic algorithm (GA), and were deployed by support vector machine to HRV classification.

MATERIALS AND METHODS

In this paper, 53 ECGs including 3 different beat types (ventricular fibrillation (VF), atrial fibrillation (AF) and also normal sinus rhythm (NSR)), were selected from the MIT/BIH arrhythmia database. The approach contains 4 stages including HRV signal extraction from each ECG signal, feature extraction using DWT (entropy, mean, variance, kurtosis and spectral component β), best features selection by GA and classification of normal and abnormal ECGs using the selected features by support vector machine (SVM).

RESULTS

The performance of the classification procedure employing the combination of selected features were evaluated using several measures including accuracy, sensitivity, specificity and precision which resulted in 97.14%, 97.54%, 96.9% and 97.64%, respectively.

CONCLUSION

A comparative analysis with the related existing methods illustrates the proposed method has a higher potential in the classification of AF and VF. The attempt to classify the ECG signal has been successfully achieved. The proposed method has shown a promising sensitivity of 97.54% which indicates that this technique is an excellent model for computer-aided diagnosis of cardiac arrhythmias.

摘要

背景

心电图(ECG)被定义为一种代表心脏活动的电信号。心率变异性(HRV)作为两个连续心跳之间间隔的变化,代表自主神经系统交感神经和副交感神经分支之间的平衡。

目的

在本研究中,我们旨在评估从HRV中提取的基于离散小波变换(DWT)的特征的有效性,这些特征通过遗传算法(GA)进一步选择,并由支持向量机用于HRV分类。

材料与方法

本文从麻省理工学院/贝斯以色列女执事医疗中心心律失常数据库中选取了53份心电图,包括3种不同的心跳类型(心室颤动(VF)、心房颤动(AF)以及正常窦性心律(NSR))。该方法包括4个阶段,即从每个心电图信号中提取HRV信号、使用DWT进行特征提取(熵、均值、方差、峰度和频谱成分β)、通过GA选择最佳特征以及使用支持向量机(SVM)对正常和异常心电图进行分类。

结果

采用几种测量方法(包括准确率、灵敏度、特异性和精确率)对采用所选特征组合的分类程序的性能进行了评估,结果分别为97.14%、97.54%、96.9%和97.64%。

结论

与相关现有方法的对比分析表明,所提出的方法在AF和VF分类方面具有更高的潜力。成功实现了对心电图信号的分类。所提出的方法显示出有前景的97.54%的灵敏度,这表明该技术是心律失常计算机辅助诊断的优秀模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3838/6280110/bc711357e59d/JBPE-8-423-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验