Department of ECBE, Ryerson University, 350 Victoria St., Toronto, M5B2K3, Canada.
THFCFML, Toronto General Hospital, 200 Elizabeth St., Toronto, M5G2C4, Canada.
Comput Biol Med. 2019 Sep;112:103379. doi: 10.1016/j.compbiomed.2019.103379. Epub 2019 Aug 3.
Ventricular arrhythmias (VA) are life-threatening pathophysiological conditions that seriously impact the normal functioning of the heart. Ventricular tachycardia (VT) and ventricular fibrillation (VF) are the two well known types of VA. VF is the lethal of the VAs and could be characterized by its organizational progression over time. The success of cardiac resuscitation strongly depends on the type of VA, its evolution over time and response to therapy. Due to the time critical nature of VF, computationally efficient quantification of VAs and swift feedback are essential. This work attempted to arrive at computationally efficient and data-driven techniques based on Empirical Mode Decomposition for classifying and tracking VAs over time. The approaches are divided into two aims: (1) 'in-hospital' scenarios for characterizing the dynamics of VA episodes to assist clinicians in planning long-term therapy options, and (2) 'out-of-hospital' scenarios for providing near real-time feedback to detect/track the progression of VAs over time to assist medical personnel select/modify therapy options. Using an ECG database of 61 60-s VA segments obtained for classifying VT vs. VF and sub-classifying VF into organized VF (OVF) and disorganized VF (DVF), maximum classification accuracies of 96.7% (AUC = 0.993) and 87.2% (AUC = 0.968) were obtained for classifying VT vs. VF and OVF vs. DVF during 'in-hospital' analysis. Additionally, two near real-time approaches were presented for 'out-of-hospital' analysis where average accuracies of 71% and 73% were achieved for VT/VF and OVF/DVF classification, as well as demonstrating strong potential for monitoring VA progressions over time.
室性心律失常(VA)是危及生命的病理生理状况,严重影响心脏的正常功能。室性心动过速(VT)和心室颤动(VF)是两种众所周知的 VA 类型。VF 是 VA 中致命的一种,其特征可以随着时间的推移而逐渐显现。心脏复苏的成功与否在很大程度上取决于 VA 的类型、其随时间的演变以及对治疗的反应。由于 VF 的时间紧迫性,高效的 VA 量化和快速反馈至关重要。本工作尝试基于经验模态分解(Empirical Mode Decomposition)提出计算效率高且数据驱动的技术,以对 VA 进行分类和随时间跟踪。这些方法分为两个目标:(1)“院内”场景,用于对 VA 发作的动力学进行特征描述,以帮助临床医生制定长期治疗方案;(2)“院外”场景,用于提供近乎实时的反馈,以检测/跟踪 VA 随时间的进展,以帮助医务人员选择/修改治疗方案。本研究使用了一个包含 61 个 60 秒 VA 片段的 ECG 数据库,用于对 VT 与 VF 进行分类,并对 VF 进行亚分类为有组织的 VF(OVF)和无组织的 VF(DVF)。在“院内”分析中,对 VT 与 VF 以及 OVF 与 DVF 进行分类时,最大分类准确率分别为 96.7%(AUC=0.993)和 87.2%(AUC=0.968)。此外,还提出了两种用于“院外”分析的近实时方法,在 VT/VF 和 OVF/DVF 分类方面,平均准确率分别达到 71%和 73%,并且显示出对 VA 随时间演变进行监测的巨大潜力。