Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA.
PLoS Comput Biol. 2012;8(10):e1002744. doi: 10.1371/journal.pcbi.1002744. Epub 2012 Oct 25.
Efforts to reduce the viral load of human immunodeficiency virus type 1 (HIV-1) during long-term treatment are challenged by the evolution of anti-viral resistance mutants. Recent studies have shown that gene therapy approaches based on conditionally replicating vectors (CRVs) could have many advantages over anti-viral drugs and other approaches to therapy, potentially including the ability to circumvent the problem of evolved resistance. However, research to date has not explored the evolutionary consequences of long-term treatment of HIV-1 infections with conditionally replicating vectors. In this study, we analyze a computational model of the within-host co-evolutionary dynamics of HIV-1 and conditionally replicating vectors, using the recently proposed 'therapeutic interfering particle' as an example. The model keeps track of the stochastic process of viral mutation, and the deterministic population dynamics of T cells as well as different strains of CRV and HIV-1 particles. We show that early in the co-infection, mutant HIV-1 genotypes that escape suppression by CRV therapy appear; this is similar to the dynamics observed in drug treatments and other gene therapies. In contrast to other treatments, however, the CRV population is able to evolve and catch up with the dominant HIV-1 escape mutant and persist long-term in most cases. On evolutionary grounds, gene therapies based on CRVs appear to be a promising tool for long-term treatment of HIV-1. Our model allows us to propose design principles to optimize the efficacy of this class of gene therapies. In addition, because of the analogy between CRVs and naturally-occurring defective interfering particles, our results also shed light on the co-evolutionary dynamics of wild-type viruses and their defective interfering particles during natural infections.
在长期治疗中,努力降低人类免疫缺陷病毒 1 型 (HIV-1) 的病毒载量受到抗病毒耐药突变体进化的挑战。最近的研究表明,基于条件复制载体 (CRV) 的基因治疗方法可能比抗病毒药物和其他治疗方法具有许多优势,可能包括规避进化耐药性问题的能力。然而,迄今为止的研究尚未探索用条件复制载体长期治疗 HIV-1 感染的进化后果。在这项研究中,我们使用最近提出的“治疗性干扰粒子”作为一个例子,分析了 HIV-1 和条件复制载体在宿主内共进化动力学的计算模型。该模型跟踪 HIV-1 突变的随机过程,以及 T 细胞的确定性群体动力学以及不同株的 CRV 和 HIV-1 粒子。我们表明,在共感染的早期,逃避 CRV 治疗抑制的突变 HIV-1 基因型出现;这类似于在药物治疗和其他基因治疗中观察到的动态。与其他治疗方法相比,然而,CRV 群体能够进化并赶上占主导地位的 HIV-1 逃逸突变体,并在大多数情况下长期存在。从进化的角度来看,基于 CRV 的基因治疗似乎是长期治疗 HIV-1 的一种有前途的工具。我们的模型使我们能够提出设计原则来优化此类基因治疗的疗效。此外,由于 CRV 与天然缺陷干扰粒子之间的类比,我们的结果也揭示了自然感染中野生型病毒及其缺陷干扰粒子的共进化动力学。