Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
Proc Biol Sci. 2012 Aug 7;279(1740):3003-10. doi: 10.1098/rspb.2012.0328. Epub 2012 Apr 4.
With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle.
由于 HIV 的高突变率,它能够逃避 CD8(+)细胞毒性 T 淋巴细胞(CTL)的识别、抑制和/或杀伤。逃逸变体相互取代的速度可以洞察单一 CTL 克隆所施加的选择压力。我们研究了 HIV 生命周期的特定特征对免疫逃逸动态的影响。首先,已经发现 HIV 感染患者的细胞可以携带多个前病毒拷贝。为了研究这个过程如何影响免疫逃逸的出现,我们开发了一个具有细胞多重感染的 HIV 动力学数学模型。增加多重感染细胞的频率会延迟免疫逃逸变体的出现,减缓它们取代野生型变体的速度,甚至可以防止逃逸变体接管准种。其次,我们研究了细胞内潜伏期对逃逸率的影响,表明逃逸率预计会比之前预期的更慢。总之,较慢的逃逸率并不一定意味着 CTL 介导的杀伤 HIV 感染细胞效率低下,而是至少部分是由于病毒生命周期的特定特征所致。