Suppr超能文献

体内切伦科夫发光成像:分子成像的新工具。

In vivo Cerenkov luminescence imaging: a new tool for molecular imaging.

机构信息

Department of Biomedical Engineering, and Center for Molecular and Genomic Imaging, University of California at Davis, , One Shields Avenue, Davis, CA 95616, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4605-19. doi: 10.1098/rsta.2011.0271.

Abstract

Cerenkov radiation is a phenomenon where optical photons are emitted when a charged particle moves faster than the speed of light for the medium in which it travels. Recently, we and others have discovered that measurable visible light due to the Cerenkov effect is produced in vivo following the administration of β-emitting radionuclides to small animals. Furthermore, the amounts of injected activity required to produce a detectable signal are consistent with small-animal molecular imaging applications. This surprising observation has led to the development of a new hybrid molecular imaging modality known as Cerenkov luminescence imaging (CLI), which allows the spatial distribution of biomolecules labelled with β-emitting radionuclides to be imaged in vivo using sensitive charge-coupled device cameras. We review the physics of Cerenkov radiation as it relates to molecular imaging, present simulation results for light intensity and spatial distribution, and show an example of CLI in a mouse cancer model. CLI allows many common radiotracers to be imaged in widely available in vivo optical imaging systems, and, more importantly, provides a pathway for directly imaging β(-)-emitting radionuclides that are being developed for therapeutic applications in cancer and that are not readily imaged by existing methods.

摘要

切伦科夫辐射是一种当带电粒子在其传播的介质中运动速度超过光速时会发射出光量子的现象。最近,我们和其他人发现,在向小动物体内施用β发射放射性核素后,会因切伦科夫效应而在体内产生可测量的可见光。此外,产生可检测信号所需的注入放射性活度与小动物分子成像应用一致。这一惊人的观察结果导致了一种新的混合分子成像模式的发展,称为切伦科夫发光成像(CLI),它允许使用灵敏的电荷耦合器件(CCD)相机对标记有β发射放射性核素的生物分子的空间分布进行体内成像。我们回顾了与分子成像相关的切伦科夫辐射物理,给出了光强和空间分布的模拟结果,并展示了在小鼠癌症模型中的 CLI 示例。CLI 允许在广泛使用的体内光学成像系统中对许多常见的放射性示踪剂进行成像,更重要的是,为正在开发用于癌症治疗且不易用现有方法成像的β(-)发射放射性核素的直接成像提供了一种途径。

相似文献

1
In vivo Cerenkov luminescence imaging: a new tool for molecular imaging.
Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4605-19. doi: 10.1098/rsta.2011.0271.
2
Computed Cerenkov luminescence yields for radionuclides used in biology and medicine.
Phys Med Biol. 2015 Jun 7;60(11):4263-80. doi: 10.1088/0031-9155/60/11/4263. Epub 2015 May 14.
3
The potential for Cerenkov luminescence imaging of alpha-emitting radionuclides.
Phys Med Biol. 2012 Feb 7;57(3):771-83. doi: 10.1088/0031-9155/57/3/771. Epub 2012 Jan 18.
4
Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers.
J Nucl Med. 2014 Nov;55(11):1905-9. doi: 10.2967/jnumed.114.139105. Epub 2014 Oct 9.
5
Cerenkov Luminescence Imaging (CLI) for cancer therapy monitoring.
J Vis Exp. 2012 Nov 13(69):e4341. doi: 10.3791/4341.
6
Cerenkov luminescence imaging of medical isotopes.
J Nucl Med. 2010 Jul;51(7):1123-30. doi: 10.2967/jnumed.110.076521. Epub 2010 Jun 16.
8
Cerenkov imaging - a new modality for molecular imaging.
Am J Nucl Med Mol Imaging. 2012;2(2):163-73. Epub 2012 Mar 28.
10
In Vivo 3-Dimensional Radiopharmaceutical-Excited Fluorescence Tomography.
J Nucl Med. 2017 Jan;58(1):169-174. doi: 10.2967/jnumed.116.180596. Epub 2016 Sep 22.

引用本文的文献

1
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications.
Pharmaceutics. 2025 Jul 14;17(7):912. doi: 10.3390/pharmaceutics17070912.
2
Optical (Cherenkov) dosimetry to unravel the radiobiological effects of radioisotope based therapy.
Eur J Nucl Med Mol Imaging. 2025 May;52(6):1955-1957. doi: 10.1007/s00259-024-07047-4.
4
Amplification of Cerenkov luminescence using semiconducting polymers for cancer theranostics.
Adv Funct Mater. 2023 Aug 15;33(33). doi: 10.1002/adfm.202302777. Epub 2023 May 1.
5
Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts.
Cancer Nanotechnol. 2023;14(1):15. doi: 10.1186/s12645-023-00165-y. Epub 2023 Feb 27.
7
In vivo molecular imaging in preclinical research.
Lab Anim Res. 2022 Oct 21;38(1):31. doi: 10.1186/s42826-022-00142-3.
8
Cerenkov Luminescence Imaging in the Development and Production of Radiopharmaceuticals.
Front Phys. 2021;9. doi: 10.3389/fphy.2021.632056. Epub 2021 Mar 3.
9
Detection of Shortwave-Infrared Cerenkov Luminescence from Medical Isotopes.
J Nucl Med. 2023 Jan;64(1):177-182. doi: 10.2967/jnumed.122.264079. Epub 2022 Jun 23.

本文引用的文献

1
Optical imaging for the new grammar of drug discovery.
Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4651-65. doi: 10.1098/rsta.2011.0300.
3
Whole-body Cerenkov luminescence tomography with the finite element SP(3) method.
Ann Biomed Eng. 2011 Jun;39(6):1728-35. doi: 10.1007/s10439-011-0261-1. Epub 2011 Feb 8.
4
Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation.
Opt Express. 2010 Nov 22;18(24):24441-50. doi: 10.1364/OE.18.024441.
5
On the potential for molecular imaging with Cerenkov luminescence.
Opt Lett. 2010 Dec 1;35(23):3889-91. doi: 10.1364/OL.35.003889.
7
In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation.
Eur J Nucl Med Mol Imaging. 2011 Jan;38(1):120-7. doi: 10.1007/s00259-010-1630-y. Epub 2010 Sep 30.
8
Whole animal imaging.
Wiley Interdiscip Rev Syst Biol Med. 2010 Jul-Aug;2(4):398-421. doi: 10.1002/wsbm.71.
9
Cerenkov luminescence imaging of medical isotopes.
J Nucl Med. 2010 Jul;51(7):1123-30. doi: 10.2967/jnumed.110.076521. Epub 2010 Jun 16.
10
Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging.
Small. 2010 May 21;6(10):1087-91. doi: 10.1002/smll.200902408.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验